GaAs nanopillar-array solar cells employing in situ surface passivation
Giacomo Mariani (),
Adam C. Scofield,
Chung-Hong Hung and
Diana L. Huffaker
Additional contact information
Giacomo Mariani: University of California at Los Angeles
Adam C. Scofield: University of California at Los Angeles
Chung-Hong Hung: University of California at Los Angeles
Diana L. Huffaker: University of California at Los Angeles
Nature Communications, 2013, vol. 4, issue 1, 1-8
Abstract:
Abstract Arrays of III–V direct-bandgap semiconductor nanopillars represent promising photovoltaic candidates due to their inherent high optical absorption coefficients and minimized reflection arising from light trapping, efficient charge collection in the radial direction and the ability to synthesize them on low-cost platforms. However, the increased surface area results in surface states that hamper the power conversion efficiency. Here, we report the first demonstration of GaAs nanopillar-array photovoltaics employing epitaxial passivation with air mass 1.5 global power conversion efficiencies of 6.63%. High-bandgap epitaxial InGaP shells are grown in situ and cap the radial p–n junctions to alleviate surface-state effects. Under light, the photovoltaic devices exhibit open-circuit voltages of 0.44 V, short-circuit current densities of 24.3 mA cm−2 and fill factors of 62% with high external quantum efficiencies >70% across the spectral regime of interest. A novel titanium/indium tin oxide annealed alloy is exploited as transparent ohmic anode.
Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/ncomms2509 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2509
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms2509
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().