Moderate doping leads to high performance of semiconductor/insulator polymer blend transistors
Guanghao Lu,
James Blakesley,
Scott Himmelberger,
Patrick Pingel,
Johannes Frisch,
Ingo Lieberwirth,
Ingo Salzmann,
Martin Oehzelt,
Riccardo Di Pietro,
Alberto Salleo,
Norbert Koch () and
Dieter Neher ()
Additional contact information
Guanghao Lu: Institut für Physik und Astronomie, Universität Potsdam
James Blakesley: Institut für Physik und Astronomie, Universität Potsdam
Scott Himmelberger: Stanford University
Patrick Pingel: Institut für Physik und Astronomie, Universität Potsdam
Johannes Frisch: Institut für Physik, Humboldt-Universität zu Berlin
Ingo Lieberwirth: Max-Planck-Institut für Polymerforschung
Ingo Salzmann: Institut für Physik, Humboldt-Universität zu Berlin
Martin Oehzelt: BESSY II, Helmholtz-Zentrum fu¨r Materialien und Energie GmbH
Riccardo Di Pietro: Institut für Physik und Astronomie, Universität Potsdam
Alberto Salleo: Stanford University
Norbert Koch: Institut für Physik, Humboldt-Universität zu Berlin
Dieter Neher: Institut für Physik und Astronomie, Universität Potsdam
Nature Communications, 2013, vol. 4, issue 1, 1-8
Abstract:
Abstract Polymer transistors are being intensively developed for next-generation flexible electronics. Blends comprising a small amount of semiconducting polymer mixed into an insulating polymer matrix have simultaneously shown superior performance and environmental stability in organic field-effect transistors compared with the neat semiconductor. Here we show that such blends actually perform very poorly in the undoped state, and that mobility and on/off ratio are improved dramatically upon moderate doping. Structural investigations show that these blend layers feature nanometre-scale semiconductor domains and a vertical composition gradient. This particular morphology enables a quasi three-dimensional spatial distribution of semiconductor pathways within the insulating matrix, in which charge accumulation and depletion via a gate bias is substantially different from neat semiconductor, and where high on-current and low off-current are simultaneously realized in the stable doped state. Adding only 5 wt% of a semiconducting polymer to a polystyrene matrix, we realized an environmentally stable inverter with gain up to 60.
Date: 2013
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms2587 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2587
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms2587
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().