Quantum coherence controls the charge separation in a prototypical artificial light-harvesting system
Carlo Andrea Rozzi,
Sarah Maria Falke,
Nicola Spallanzani,
Angel Rubio,
Elisa Molinari,
Daniele Brida,
Margherita Maiuri,
Giulio Cerullo,
Heiko Schramm,
Jens Christoffers and
Christoph Lienau ()
Additional contact information
Carlo Andrea Rozzi: Istituto Nanoscienze – CNR, Centro S3, via Campi 213a
Sarah Maria Falke: Institut für Physik and Center of Interface Science, Carl von Ossietzky Universität
Nicola Spallanzani: Istituto Nanoscienze – CNR, Centro S3, via Campi 213a
Angel Rubio: Nano-Bio Spectroscopy Group and ETSF Scientific Development Centre, Dpto. Física de Materiales, Universidad del País Vasco, Centro de Física de Materiales CSIC-UPV/EHU-MPC and DIPC, Av. Tolosa 72
Elisa Molinari: Istituto Nanoscienze – CNR, Centro S3, via Campi 213a
Daniele Brida: IFN-CNR, Politecnico di Milano
Margherita Maiuri: IFN-CNR, Politecnico di Milano
Giulio Cerullo: IFN-CNR, Politecnico di Milano
Heiko Schramm: Institut für Chemie and Center of Interface Science, Carl von Ossietzky Universität
Jens Christoffers: Institut für Chemie and Center of Interface Science, Carl von Ossietzky Universität
Christoph Lienau: Institut für Physik and Center of Interface Science, Carl von Ossietzky Universität
Nature Communications, 2013, vol. 4, issue 1, 1-7
Abstract:
Abstract The efficient conversion of light into electricity or chemical fuels is a fundamental challenge. In artificial photosynthetic and photovoltaic devices, this conversion is generally thought to happen on ultrafast, femto-to-picosecond timescales and to involve an incoherent electron transfer process. In some biological systems, however, there is growing evidence that the coherent motion of electronic wavepackets is an essential primary step, raising questions about the role of quantum coherence in artificial devices. Here we investigate the primary charge-transfer process in a supramolecular triad, a prototypical artificial reaction centre. Combining high time-resolution femtosecond spectroscopy and time-dependent density functional theory, we provide compelling evidence that the driving mechanism of the photoinduced current generation cycle is a correlated wavelike motion of electrons and nuclei on a timescale of few tens of femtoseconds. We highlight the fundamental role of the interface between chromophore and charge acceptor in triggering the coherent wavelike electron-hole splitting.
Date: 2013
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms2603 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2603
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms2603
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().