EconPapers    
Economics at your fingertips  
 

Magnetic order in a frustrated two-dimensional atom lattice at a semiconductor surface

Gang Li, Philipp Höpfner, Jörg Schäfer (), Christian Blumenstein, Sebastian Meyer, Aaron Bostwick, Eli Rotenberg, Ralph Claessen and Werner Hanke
Additional contact information
Gang Li: Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
Philipp Höpfner: Physikalisches Institut, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
Jörg Schäfer: Physikalisches Institut, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
Christian Blumenstein: Physikalisches Institut, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
Sebastian Meyer: Physikalisches Institut, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
Aaron Bostwick: Advanced Light Source, Lawrence Berkeley National Laboratory
Eli Rotenberg: Advanced Light Source, Lawrence Berkeley National Laboratory
Ralph Claessen: Physikalisches Institut, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
Werner Hanke: Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Am Hubland, Würzburg 97074, Germany

Nature Communications, 2013, vol. 4, issue 1, 1-6

Abstract: Abstract Two-dimensional electron systems, as exploited for device applications, can lose their conducting properties because of local Coulomb repulsion, leading to a Mott-insulating state. In triangular geometries, any concomitant antiferromagnetic spin ordering can be prevented by geometric frustration, spurring speculations about ‘melted’ phases, known as spin liquid. Here we show that for a realization of a triangular electron system by epitaxial atom adsorption on a semiconductor, such spin disorder, however, does not appear. Our study compares the electron excitation spectra obtained from theoretical simulations of the correlated electron lattice with data from high-resolution photoemission. We find that an unusual row-wise antiferromagnetic spin alignment occurs that is reflected in the photoemission spectra as characteristic ‘shadow bands’ induced by the spin pattern. The magnetic order in a frustrated lattice of otherwise non-magnetic components emerges from longer-range electron hopping between the atoms. This finding can offer new ways of controlling magnetism on surfaces.

Date: 2013
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/ncomms2617 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2617

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms2617

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2617