EconPapers    
Economics at your fingertips  
 

Interplay of Dirac fermions and heavy quasiparticles in solids

M. Höppner, S. Seiro, A. Chikina, A. Fedorov, M. Güttler, S. Danzenbächer, A. Generalov, K. Kummer, S. Patil, S. L. Molodtsov, Y. Kucherenko, C. Geibel, V. N. Strocov, M. Shi, M. Radovic, T. Schmitt, C. Laubschat and D. V. Vyalikh ()
Additional contact information
M. Höppner: Max Planck Institute for Solid State Research, Heisenbergstrasse 1
S. Seiro: Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40
A. Chikina: Institute of Solid State Physics, Dresden University of Technology, Zellescher Weg 16
A. Fedorov: Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden, Helmholtzstr. 20, P.O. Box 270116
M. Güttler: Institute of Solid State Physics, Dresden University of Technology, Zellescher Weg 16
S. Danzenbächer: Institute of Solid State Physics, Dresden University of Technology, Zellescher Weg 16
A. Generalov: Institute of Solid State Physics, Dresden University of Technology, Zellescher Weg 16
K. Kummer: European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, Boîte Postale 220
S. Patil: Institute of Solid State Physics, Dresden University of Technology, Zellescher Weg 16
S. L. Molodtsov: European XFEL GmbH, Albert-Einstein-Ring 19
Y. Kucherenko: Institute of Solid State Physics, Dresden University of Technology, Zellescher Weg 16
C. Geibel: Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40
V. N. Strocov: Swiss Light Sources, Paul Scherrer Institut, Aarebrücke
M. Shi: Swiss Light Sources, Paul Scherrer Institut, Aarebrücke
M. Radovic: Swiss Light Sources, Paul Scherrer Institut, Aarebrücke
T. Schmitt: Swiss Light Sources, Paul Scherrer Institut, Aarebrücke
C. Laubschat: Institute of Solid State Physics, Dresden University of Technology, Zellescher Weg 16
D. V. Vyalikh: Institute of Solid State Physics, Dresden University of Technology, Zellescher Weg 16

Nature Communications, 2013, vol. 4, issue 1, 1-6

Abstract: Abstract Many-body interactions in crystalline solids can be conveniently described in terms of quasiparticles with strongly renormalized masses as compared with those of non-interacting particles. Examples of extreme mass renormalization are on the one hand graphene, where the charge carriers obey the linear dispersion relation of massless Dirac fermions, and on the other hand heavy-fermion materials where the effective electron mass approaches the mass of a proton. Here we show that both extremes, Dirac fermions, like they are found in graphene and extremely heavy quasiparticles characteristic for Kondo materials, may not only coexist in a solid but can also undergo strong mutual interactions. Using the example of EuRh2Si2, we explicitly demonstrate that these interactions can take place at the surface and in the bulk. The presence of the linear dispersion is imposed solely by the crystal symmetry, whereas the existence of heavy quasiparticles is caused by the localized nature of the 4f states.

Date: 2013
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/ncomms2654 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2654

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms2654

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2654