EconPapers    
Economics at your fingertips  
 

Single-shot pulse duration monitor for extreme ultraviolet and X-ray free-electron lasers

R. Riedel (), A. Al-Shemmary, M. Gensch, T. Golz, M. Harmand, N. Medvedev, M. J. Prandolini, K. Sokolowski-Tinten, S. Toleikis, U. Wegner, B. Ziaja, N. Stojanovic () and F. Tavella
Additional contact information
R. Riedel: Universität Hamburg, Luruper Chaussee 149
A. Al-Shemmary: Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
M. Gensch: Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400
T. Golz: Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
M. Harmand: Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
N. Medvedev: Center for Free-Electron Laser Science/DESY Notkestraße 85
M. J. Prandolini: Helmholtz-Institut Jena, Max-Wien-Platz 1
K. Sokolowski-Tinten: Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen
S. Toleikis: Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
U. Wegner: Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
B. Ziaja: Center for Free-Electron Laser Science/DESY Notkestraße 85
N. Stojanovic: Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
F. Tavella: Helmholtz-Institut Jena, Max-Wien-Platz 1

Nature Communications, 2013, vol. 4, issue 1, 1-7

Abstract: Abstract The resolution of ultrafast studies performed at extreme ultraviolet and X-ray free-electron lasers is still limited by shot-to-shot variations of the temporal pulse characteristics. Here we show a versatile single-shot temporal diagnostic tool that allows the determination of the extreme ultraviolet pulse duration and the relative arrival time with respect to an external pump-probe laser pulse. This method is based on time-resolved optical probing of the transient reflectivity change due to linear absorption of the extreme ultraviolet pulse within a solid material. In this work, we present measurements performed at the FLASH free-electron laser. We determine the pulse duration at two distinct wavelengths, yielding (184±14) fs at 41.5 nm and (21±19) fs at 5.5 nm. Furthermore, we demonstrate the feasibility to operate the tool as an online diagnostic by using a 20-nm-thin Si3N4 membrane as target. Our results are supported by detailed numerical and analytical investigations.

Date: 2013
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/ncomms2754 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2754

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms2754

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2754