Polariton condensation in solitonic gap states in a one-dimensional periodic potential
D. Tanese,
H. Flayac,
D. Solnyshkov,
A. Amo,
A. Lemaître,
E. Galopin,
R. Braive,
P. Senellart,
I. Sagnes,
G. Malpuech and
J. Bloch ()
Additional contact information
D. Tanese: Laboratoire de Photonique et Nanostructures, LPN/CNRS, Route de Nozay
H. Flayac: Institut Pascal, PHOTON-N2, Clermont Université, Université Blaise Pascal, CNRS
D. Solnyshkov: Institut Pascal, PHOTON-N2, Clermont Université, Université Blaise Pascal, CNRS
A. Amo: Laboratoire de Photonique et Nanostructures, LPN/CNRS, Route de Nozay
A. Lemaître: Laboratoire de Photonique et Nanostructures, LPN/CNRS, Route de Nozay
E. Galopin: Laboratoire de Photonique et Nanostructures, LPN/CNRS, Route de Nozay
R. Braive: Laboratoire de Photonique et Nanostructures, LPN/CNRS, Route de Nozay
P. Senellart: Laboratoire de Photonique et Nanostructures, LPN/CNRS, Route de Nozay
I. Sagnes: Laboratoire de Photonique et Nanostructures, LPN/CNRS, Route de Nozay
G. Malpuech: Institut Pascal, PHOTON-N2, Clermont Université, Université Blaise Pascal, CNRS
J. Bloch: Laboratoire de Photonique et Nanostructures, LPN/CNRS, Route de Nozay
Nature Communications, 2013, vol. 4, issue 1, 1-9
Abstract:
Abstract Manipulation of nonlinear waves in artificial periodic structures leads to spectacular spatial features, such as generation of gap solitons or onset of the Mott insulator phase transition. Cavity exciton–polaritons are strongly interacting quasiparticles offering large possibilities for potential optical technologies. Here we report their condensation in a one-dimensional microcavity with a periodic modulation. The resulting mini-band structure dramatically influences the condensation process. Contrary to non-modulated cavities, where condensates expand, here, we observe spontaneous condensation in localized gap soliton states. Depending on excitation conditions, we access different dynamical regimes: we demonstrate the formation of gap solitons either moving along the ridge or bound to the potential created by the reservoir of uncondensed excitons. We also find Josephson oscillations of gap solitons triggered between the two sides of the reservoir. This system is foreseen as a building block for polaritonic circuits, where propagation and localization are optically controlled and reconfigurable.
Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/ncomms2760 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2760
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms2760
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().