Microcavity controlled coupling of excitonic qubits
F. Albert,
K. Sivalertporn,
J. Kasprzak,
M. Strauß,
C. Schneider,
S. Höfling,
M. Kamp,
A. Forchel,
S. Reitzenstein,
E.A. Muljarov and
W. Langbein ()
Additional contact information
F. Albert: Technische Physik, Physikalisches Institut, and Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, Würzburg D-97074, Germany
K. Sivalertporn: School of Physics and Astronomy, Cardiff University, The Parade
J. Kasprzak: Institut Néel, CNRS et Université Joseph Fourier, BP 166
M. Strauß: Technische Physik, Physikalisches Institut, and Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, Würzburg D-97074, Germany
C. Schneider: Technische Physik, Physikalisches Institut, and Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, Würzburg D-97074, Germany
S. Höfling: Technische Physik, Physikalisches Institut, and Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, Würzburg D-97074, Germany
M. Kamp: Technische Physik, Physikalisches Institut, and Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, Würzburg D-97074, Germany
A. Forchel: Technische Physik, Physikalisches Institut, and Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, Würzburg D-97074, Germany
S. Reitzenstein: Technische Physik, Physikalisches Institut, and Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, Würzburg D-97074, Germany
E.A. Muljarov: School of Physics and Astronomy, Cardiff University, The Parade
W. Langbein: School of Physics and Astronomy, Cardiff University, The Parade
Nature Communications, 2013, vol. 4, issue 1, 1-6
Abstract:
Abstract Controlled non-local energy and coherence transfer enables light harvesting in photosynthesis and non-local logical operations in quantum computing. This process is intuitively pictured by a pair of mechanical oscillators, coupled by a spring, allowing for a reversible exchange of excitation. On a microscopic level, the most relevant mechanism of coherent coupling of distant quantum bits—like trapped ions, superconducting qubits or excitons confined in semiconductor quantum dots—is coupling via the electromagnetic field. Here we demonstrate the controlled coherent coupling of spatially separated quantum dots via the photon mode of a solid state microresonator using the strong exciton–photon coupling regime. This is enabled by two-dimensional spectroscopy of the sample’s coherent response, a sensitive probe of the coherent coupling. The results are quantitatively understood in a rigorous description of the cavity-mediated coupling of the quantum dot excitons. This mechanism can be used, for instance in photonic crystal cavity networks, to enable a long-range, non-local coherent coupling.
Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/ncomms2764 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2764
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms2764
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().