Interspecific bacterial sensing through airborne signals modulates locomotion and drug resistance
Kwang-sun Kim,
Soohyun Lee and
Choong-Min Ryu ()
Additional contact information
Kwang-sun Kim: Superbacteria Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Korea
Soohyun Lee: Superbacteria Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Korea
Choong-Min Ryu: Superbacteria Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Korea
Nature Communications, 2013, vol. 4, issue 1, 1-12
Abstract:
Abstract Bacteria use chemical signals to sense each other and to regulate various physiological functions. Although it is known that some airborne volatile organic compounds function as bacterial signalling molecules, their identities and effects on global gene expression and bacterial physiological processes remain largely unknown. Here we perform microarray analyses of Escherichia coli exposed to volatile organic compounds emitted from Bacillus subtilis. We find that 2,3-butanedione and glyoxylic acid mediate global changes in gene expression related to motility and antibiotic resistance. Volatile organic compound-dependent phenotypes are conserved among bacteria and are regulated by the previously uncharacterized ypdB gene product through the downstream transcription factors soxS, rpoS or yjhU. These results strongly suggest that bacteria use airborne volatile organic compounds to sense other bacteria and to change master regulatory gene activity to adapt.
Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/ncomms2789 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2789
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms2789
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().