Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers
Christoph M. Eigenwillig,
Wolfgang Wieser,
Sebastian Todor,
Benjamin R. Biedermann,
Thomas Klein,
Christian Jirauschek and
Robert Huber ()
Additional contact information
Christoph M. Eigenwillig: Lehrstuhl für BioMolekulare Optik, Fakultät für Physik, Ludwig–Maximilians-Universität München, Oettingenstrasse 67, 80538 Munich, Germany
Wolfgang Wieser: Lehrstuhl für BioMolekulare Optik, Fakultät für Physik, Ludwig–Maximilians-Universität München, Oettingenstrasse 67, 80538 Munich, Germany
Sebastian Todor: Institute for Nanoelectronics, Technische Universität München, Arcisstrasse 21, 80333 Munich, Germany
Benjamin R. Biedermann: Lehrstuhl für BioMolekulare Optik, Fakultät für Physik, Ludwig–Maximilians-Universität München, Oettingenstrasse 67, 80538 Munich, Germany
Thomas Klein: Lehrstuhl für BioMolekulare Optik, Fakultät für Physik, Ludwig–Maximilians-Universität München, Oettingenstrasse 67, 80538 Munich, Germany
Christian Jirauschek: Institute for Nanoelectronics, Technische Universität München, Arcisstrasse 21, 80333 Munich, Germany
Robert Huber: Lehrstuhl für BioMolekulare Optik, Fakultät für Physik, Ludwig–Maximilians-Universität München, Oettingenstrasse 67, 80538 Munich, Germany
Nature Communications, 2013, vol. 4, issue 1, 1-7
Abstract:
Abstract Ultrafast lasers have a crucial function in many fields of science; however, up to now, high-energy pulses directly from compact, efficient and low-power semiconductor lasers are not available. Therefore, we introduce a new approach based on temporal compression of the continuous-wave, wavelength-swept output of Fourier domain mode-locked lasers, where a narrowband optical filter is tuned synchronously to the round-trip time of light in a kilometre-long laser cavity. So far, these rapidly swept lasers enabled orders-of-magnitude speed increase in optical coherence tomography. Here we report on the generation of ~60–70 ps pulses at 390 kHz repetition rate. As energy is stored optically in the long-fibre delay line and not as population inversion in the laser-gain medium, high-energy pulses can now be generated directly from a low-power, compact semiconductor-based oscillator. Our theory predicts subpicosecond pulses with this new technique in the future.
Date: 2013
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms2870 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2870
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms2870
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().