Magnetoelectric control of frozen state in a toroidal glass
Y. Yamaguchi and
T. Kimura ()
Additional contact information
Y. Yamaguchi: Graduate School of Engineering Science, Osaka University
T. Kimura: Graduate School of Engineering Science, Osaka University
Nature Communications, 2013, vol. 4, issue 1, 1-5
Abstract:
Abstract The glass state of matter represents a frozen state of an atomically disordered system with local order only. Instead of atoms, systems with glassy states of magnetic and electric dipole moments in solids are known as spin and dipole glasses, respectively. In these conventional glasses, slow dynamics, such as relaxation and memory phenomena, are characteristics of their magnetic/dielectric properties. Here we propose a new glassy state in solids, a ‘toroidal glass’, in which toroidal moments—vector-like electromagnetic multipole moments breaking both space inversion and time reversal symmetries, and producing a linear magnetoelectric coupling—are randomly oriented and frozen. We investigate the dynamics of a linear magnetoelectric effect in Ni0.4Mn0.6TiO3 and find that the magnetoelectric responses strongly depend on the magnetoelectric cooling history and show striking memory effects. These unusual magnetoelectric dynamical features can be explained in the framework of a toroidal glass in which the toroidal frozen state can be controlled magnetoelectrically.
Date: 2013
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms3063 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3063
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms3063
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().