EconPapers    
Economics at your fingertips  
 

Homeostatic regulation of dendritic dynamics in a motor map in vivo

Sandeep Kishore and Joseph R. Fetcho ()
Additional contact information
Sandeep Kishore: Cornell University
Joseph R. Fetcho: Cornell University

Nature Communications, 2013, vol. 4, issue 1, 1-8

Abstract: Abstract Neurons and circuits are remarkably dynamic. Their gross structure can change within minutes as neurons sprout and retract processes to form new synapses. Homeostatic processes acting to regulate neuronal activity contribute to these dynamics and predict that the dendritic dynamics within pools of neurons should vary systematically in accord with the activity levels of individual neurons in the pool during behaviour. Here we test this by taking advantage of a topographic map of recruitment of spinal motoneurons in zebrafish. In vivo imaging reveals that the dendritic filopodial dynamics of motoneurons map onto their recruitment pattern, with the most electrically active cells having the lowest dynamics. Genetic reduction of activity inverts this map of dynamics. We conclude that homeostatic mechanisms driven by a gradient of activity levels in a pool of neurons can drive an associated gradation in neuronal dendritic dynamics, potentially shaping connectivity within a functionally heterogenous pool of neurons.

Date: 2013
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/ncomms3086 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3086

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms3086

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3086