Plasmon-mediated magneto-optical transparency
V. I. Belotelov (),
L. E. Kreilkamp,
I. A. Akimov,
A. N. Kalish,
D. A. Bykov,
S. Kasture,
V. J. Yallapragada,
Achanta Venu Gopal,
A. M. Grishin,
S. I. Khartsev,
M. Nur-E-Alam,
M. Vasiliev,
L. L. Doskolovich,
D. R. Yakovlev,
K. Alameh,
A. K. Zvezdin and
M. Bayer
Additional contact information
V. I. Belotelov: Lomonosov Moscow State University, Leninskie Gori
L. E. Kreilkamp: Experimental Physics 2, TU Dortmund University
I. A. Akimov: Experimental Physics 2, TU Dortmund University
A. N. Kalish: Lomonosov Moscow State University, Leninskie Gori
D. A. Bykov: Image Processing Systems Institute, Russian Academy of Sciences, Molodogvardeyskaya 151, 443001 Samara, Russia
S. Kasture: Tata Institute of Fundamental Research
V. J. Yallapragada: Tata Institute of Fundamental Research
Achanta Venu Gopal: Tata Institute of Fundamental Research
A. M. Grishin: Royal Institute of Technology, Kungl Tekniska Högskolan
S. I. Khartsev: Royal Institute of Technology, Kungl Tekniska Högskolan
M. Nur-E-Alam: Electron Science Research Institute, Edith Cowan University
M. Vasiliev: Electron Science Research Institute, Edith Cowan University
L. L. Doskolovich: Image Processing Systems Institute, Russian Academy of Sciences, Molodogvardeyskaya 151, 443001 Samara, Russia
D. R. Yakovlev: Experimental Physics 2, TU Dortmund University
K. Alameh: Electron Science Research Institute, Edith Cowan University
A. K. Zvezdin: Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilov street 38, 119991 Moscow, Russia
M. Bayer: Experimental Physics 2, TU Dortmund University
Nature Communications, 2013, vol. 4, issue 1, 1-7
Abstract:
Abstract Magnetic field control of light is among the most intriguing methods for modulation of light intensity and polarization on sub-nanosecond timescales. The implementation in nanostructured hybrid materials provides a remarkable increase of magneto-optical effects. However, so far only the enhancement of already known effects has been demonstrated in such materials. Here we postulate a novel magneto-optical phenomenon that originates solely from suitably designed nanostructured metal-dielectric material, the so-called magneto-plasmonic crystal. In this material, an incident light excites coupled plasmonic oscillations and a waveguide mode. An in-plane magnetic field allows excitation of an orthogonally polarized waveguide mode that modifies optical spectrum of the magneto-plasmonic crystal and increases its transparency. The experimentally achieved light intensity modulation reaches 24%. As the effect can potentially exceed 100%, it may have great importance for applied nanophotonics. Further, the effect allows manipulating and exciting waveguide modes by a magnetic field and light of proper polarization.
Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/ncomms3128 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3128
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms3128
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().