EconPapers    
Economics at your fingertips  
 

Complete tomography of a high-fidelity solid-state entangled spin–photon qubit pair

Kristiaan De Greve (), Peter L. McMahon (), Leo Yu, Jason S. Pelc, Cody Jones, Chandra M. Natarajan, Na Young Kim, Eisuke Abe, Sebastian Maier, Christian Schneider, Martin Kamp, Sven Höfling, Robert H. Hadfield, Alfred Forchel, M. M. Fejer and Yoshihisa Yamamoto
Additional contact information
Kristiaan De Greve: E. L. Ginzton Laboratory, Stanford University
Peter L. McMahon: E. L. Ginzton Laboratory, Stanford University
Leo Yu: E. L. Ginzton Laboratory, Stanford University
Jason S. Pelc: E. L. Ginzton Laboratory, Stanford University
Cody Jones: E. L. Ginzton Laboratory, Stanford University
Chandra M. Natarajan: E. L. Ginzton Laboratory, Stanford University
Na Young Kim: E. L. Ginzton Laboratory, Stanford University
Eisuke Abe: E. L. Ginzton Laboratory, Stanford University
Sebastian Maier: Technische Physik, Physikalisches Institut, Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Universität Würzburg
Christian Schneider: Technische Physik, Physikalisches Institut, Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Universität Würzburg
Martin Kamp: Technische Physik, Physikalisches Institut, Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Universität Würzburg
Sven Höfling: E. L. Ginzton Laboratory, Stanford University
Robert H. Hadfield: School of Engineering, University of Glasgow
Alfred Forchel: Technische Physik, Physikalisches Institut, Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Universität Würzburg
M. M. Fejer: E. L. Ginzton Laboratory, Stanford University
Yoshihisa Yamamoto: E. L. Ginzton Laboratory, Stanford University

Nature Communications, 2013, vol. 4, issue 1, 1-7

Abstract: Abstract Entanglement between stationary quantum memories and photonic qubits is crucial for future quantum communication networks. Although high-fidelity spin–photon entanglement was demonstrated in well-isolated atomic and ionic systems, in the solid-state, where massively parallel, scalable networks are most realistically conceivable, entanglement fidelities are typically limited due to intrinsic environmental interactions. Distilling high-fidelity entangled pairs from lower-fidelity precursors can act as a remedy, but the required overhead scales unfavourably with the initial entanglement fidelity. With spin–photon entanglement as a crucial building block for entangling quantum network nodes, obtaining high-fidelity entangled pairs becomes imperative for practical realization of such networks. Here we report the first results of complete state tomography of a solid-state spin–photon-polarization-entangled qubit pair, using a single electron-charged indium arsenide quantum dot. We demonstrate record-high fidelity in the solid-state of well over 90%, and the first (99.9%-confidence) achievement of a fidelity that will unambiguously allow for entanglement distribution in solid-state quantum repeater networks.

Date: 2013
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/ncomms3228 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3228

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms3228

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3228