Stray-field imaging of magnetic vortices with a single diamond spin
L. Rondin,
J. -P. Tetienne,
S. Rohart,
A. Thiaville,
T. Hingant,
P. Spinicelli,
J. -F. Roch and
V. Jacques ()
Additional contact information
L. Rondin: Laboratoire de Photonique Quantique et Moléculaire, Ecole Normale Supérieure de Cachan and CNRS UMR 8537
J. -P. Tetienne: Laboratoire de Photonique Quantique et Moléculaire, Ecole Normale Supérieure de Cachan and CNRS UMR 8537
S. Rohart: Laboratoire de Physique des Solides, Université Paris-Sud, CNRS UMR 8502
A. Thiaville: Laboratoire de Physique des Solides, Université Paris-Sud, CNRS UMR 8502
T. Hingant: Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Cachan
P. Spinicelli: Laboratoire de Photonique Quantique et Moléculaire, Ecole Normale Supérieure de Cachan and CNRS UMR 8537
J. -F. Roch: Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Cachan
V. Jacques: Laboratoire de Photonique Quantique et Moléculaire, Ecole Normale Supérieure de Cachan and CNRS UMR 8537
Nature Communications, 2013, vol. 4, issue 1, 1-5
Abstract:
Abstract Despite decades of advances in magnetic imaging, obtaining direct, quantitative information with nanometre scale spatial resolution remains an outstanding challenge. Recently, a technique has emerged that employs a single nitrogen-vacancy defect in diamond as an atomic-size magnetometer, which promises significant advances. However, the effectiveness of the technique when applied to magnetic nanostructures remains to be demonstrated. Here we use a scanning nitrogen-vacancy magnetometer to image a magnetic vortex, which is one of the most iconic objects of nanomagnetism, owing to the small size (~10 nm) of the vortex core. We report three-dimensional, vectorial and quantitative measurements of the stray magnetic field emitted by a vortex in a ferromagnetic square dot, including the detection of the vortex core. We find excellent agreement with micromagnetic simulations, both for regular vortex structures and for higher-order magnetization states. These experiments establish scanning nitrogen-vacancy magnetometry as a practical and unique tool for fundamental studies in nanomagnetism.
Date: 2013
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms3279 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3279
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms3279
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().