EconPapers    
Economics at your fingertips  
 

Observation of the Kibble–Zurek scaling law for defect formation in ion crystals

S. Ulm (), J. Roßnagel, G. Jacob, C. Degünther, S. T. Dawkins, U. G. Poschinger, R. Nigmatullin, A. Retzker, M. B. Plenio, F. Schmidt-Kaler and K. Singer
Additional contact information
S. Ulm: QUANTUM, Institut für Physik, Universität Mainz, Staudingerweg 7
J. Roßnagel: QUANTUM, Institut für Physik, Universität Mainz, Staudingerweg 7
G. Jacob: QUANTUM, Institut für Physik, Universität Mainz, Staudingerweg 7
C. Degünther: QUANTUM, Institut für Physik, Universität Mainz, Staudingerweg 7
S. T. Dawkins: QUANTUM, Institut für Physik, Universität Mainz, Staudingerweg 7
U. G. Poschinger: QUANTUM, Institut für Physik, Universität Mainz, Staudingerweg 7
R. Nigmatullin: Institut für Theoretische Physik & Center for Integrated Quantum Science and Technology, Albert-Einstein-Allee 11, Ulm University
A. Retzker: Racah Institute of Physics, The Hebrew University of Jerusalem
M. B. Plenio: Institut für Theoretische Physik & Center for Integrated Quantum Science and Technology, Albert-Einstein-Allee 11, Ulm University
F. Schmidt-Kaler: QUANTUM, Institut für Physik, Universität Mainz, Staudingerweg 7
K. Singer: QUANTUM, Institut für Physik, Universität Mainz, Staudingerweg 7

Nature Communications, 2013, vol. 4, issue 1, 1-7

Abstract: Abstract Traversal of a symmetry-breaking phase transition at finite rates can lead to causally separated regions with incompatible symmetries and the formation of defects at their boundaries, which has a crucial role in quantum and statistical mechanics, cosmology and condensed matter physics. This mechanism is conjectured to follow universal scaling laws prescribed by the Kibble–Zurek mechanism. Here we determine the scaling law for defect formation in a crystal of 16 laser-cooled trapped ions, which are conducive to the precise control of structural phases and the detection of defects. The experiment reveals an exponential scaling of defect formation γβ, where γ is the rate of traversal of the critical point and β=2.68±0.06. This supports the prediction of β=8/3≈2.67 for finite inhomogeneous systems. Our result demonstrates that the scaling laws also apply in the mesoscopic regime and emphasizes the potential for further tests of non-equilibrium thermodynamics with ion crystals.

Date: 2013
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/ncomms3290 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3290

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms3290

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3290