EconPapers    
Economics at your fingertips  
 

Topological defect formation and spontaneous symmetry breaking in ion Coulomb crystals

K. Pyka, J. Keller, H. L. Partner, R. Nigmatullin, T. Burgermeister, D. M. Meier, K. Kuhlmann, A Retzker, M. B. Plenio, W. H. Zurek, A. del Campo and T. E. Mehlstäubler ()
Additional contact information
K. Pyka: Physikalisch-Technische Bundesanstalt
J. Keller: Physikalisch-Technische Bundesanstalt
H. L. Partner: Physikalisch-Technische Bundesanstalt
R. Nigmatullin: Institute for Theoretical Physics, Albert Einstein Allee 11, Ulm University
T. Burgermeister: Physikalisch-Technische Bundesanstalt
D. M. Meier: Physikalisch-Technische Bundesanstalt
K. Kuhlmann: Physikalisch-Technische Bundesanstalt
A Retzker: Racah Institute of Physics, The Hebrew University of Jerusalem
M. B. Plenio: Institute for Theoretical Physics, Albert Einstein Allee 11, Ulm University
W. H. Zurek: Los Alamos National Laboratory
A. del Campo: Los Alamos National Laboratory
T. E. Mehlstäubler: Physikalisch-Technische Bundesanstalt

Nature Communications, 2013, vol. 4, issue 1, 1-6

Abstract: Abstract Symmetry breaking phase transitions play an important role in nature. When a system traverses such a transition at a finite rate, its causally disconnected regions choose the new broken symmetry state independently. Where such local choices are incompatible, topological defects can form. The Kibble–Zurek mechanism predicts the defect densities to follow a power law that scales with the rate of the transition. Owing to its ubiquitous nature, this theory finds application in a wide field of systems ranging from cosmology to condensed matter. Here we present the successful creation of defects in ion Coulomb crystals by a controlled quench of the confining potential, and observe an enhanced power law scaling in accordance with numerical simulations and recent predictions. This simple system with well-defined critical exponents opens up ways to investigate the physics of non-equilibrium dynamics from the classical to the quantum regime.

Date: 2013
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/ncomms3291 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3291

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms3291

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3291