Correlation between spin structure oscillations and domain wall velocities
André Bisig,
Martin Stärk,
Mohamad-Assaad Mawass,
Christoforos Moutafis,
Jan Rhensius,
Jakoba Heidler,
Felix Büttner,
Matthias Noske,
Markus Weigand,
Stefan Eisebitt,
Tolek Tyliszczak,
Bartel Van Waeyenberge,
Hermann Stoll,
Gisela Schütz and
Mathias Kläui ()
Additional contact information
André Bisig: University of Konstanz
Martin Stärk: University of Konstanz
Mohamad-Assaad Mawass: Max Planck Institute for Intelligent Systems
Christoforos Moutafis: University of Konstanz
Jan Rhensius: University of Konstanz
Jakoba Heidler: University of Konstanz
Felix Büttner: SwissFEL, Paul Scherrer Institute
Matthias Noske: Max Planck Institute for Intelligent Systems
Markus Weigand: Max Planck Institute for Intelligent Systems
Stefan Eisebitt: Institut für Optik und Atomare Physik, Technische Universität Berlin
Tolek Tyliszczak: Advanced Light Source, LBNL
Bartel Van Waeyenberge: Ghent University, Krijgslaan 281 S1
Hermann Stoll: Max Planck Institute for Intelligent Systems
Gisela Schütz: Max Planck Institute for Intelligent Systems
Mathias Kläui: University of Konstanz
Nature Communications, 2013, vol. 4, issue 1, 1-8
Abstract:
Abstract Magnetic sensing and logic devices based on the motion of magnetic domain walls rely on the precise and deterministic control of the position and the velocity of individual magnetic domain walls in curved nanowires. Varying domain wall velocities have been predicted to result from intrinsic effects such as oscillating domain wall spin structure transformations and extrinsic pinning due to imperfections. Here we use direct dynamic imaging of the nanoscale spin structure that allows us for the first time to directly check these predictions. We find a new regime of oscillating domain wall motion even below the Walker breakdown correlated with periodic spin structure changes. We show that the extrinsic pinning from imperfections in the nanowire only affects slow domain walls and we identify the magnetostatic energy, which scales with the domain wall velocity, as the energy reservoir for the domain wall to overcome the local pinning potential landscape.
Date: 2013
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms3328 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3328
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms3328
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().