EconPapers    
Economics at your fingertips  
 

Accessing 4f-states in single-molecule spintronics

Sarah Fahrendorf, Nicolae Atodiresei (), Claire Besson (), Vasile Caciuc, Frank Matthes, Stefan Blügel, Paul Kögerler, Daniel E. Bürgler and Claus M. Schneider
Additional contact information
Sarah Fahrendorf: Peter Grünberg Institute, Electronic Properties (PGI-6), Forschungszentrum Jülich, 52425 Jülich, Germany
Nicolae Atodiresei: Jülich-Aachen Research Alliance, Fundamentals for Future Information Technology (JARA-FIT), Forschungszentrum Jülich, 52425 Jülich, Germany
Claire Besson: Jülich-Aachen Research Alliance, Fundamentals for Future Information Technology (JARA-FIT), Forschungszentrum Jülich, 52425 Jülich, Germany
Vasile Caciuc: Jülich-Aachen Research Alliance, Fundamentals for Future Information Technology (JARA-FIT), Forschungszentrum Jülich, 52425 Jülich, Germany
Frank Matthes: Peter Grünberg Institute, Electronic Properties (PGI-6), Forschungszentrum Jülich, 52425 Jülich, Germany
Stefan Blügel: Jülich-Aachen Research Alliance, Fundamentals for Future Information Technology (JARA-FIT), Forschungszentrum Jülich, 52425 Jülich, Germany
Paul Kögerler: Jülich-Aachen Research Alliance, Fundamentals for Future Information Technology (JARA-FIT), Forschungszentrum Jülich, 52425 Jülich, Germany
Daniel E. Bürgler: Peter Grünberg Institute, Electronic Properties (PGI-6), Forschungszentrum Jülich, 52425 Jülich, Germany
Claus M. Schneider: Peter Grünberg Institute, Electronic Properties (PGI-6), Forschungszentrum Jülich, 52425 Jülich, Germany

Nature Communications, 2013, vol. 4, issue 1, 1-6

Abstract: Abstract Magnetic molecules are potential functional units for molecular and supramolecular spintronic devices. However, their magnetic and electronic properties depend critically on their interaction with metallic electrodes. Charge transfer and hybridization modify the electronic structure and thereby influence or even quench the molecular magnetic moment. Yet, detection and manipulation of the molecular spin state by means of charge transport, that is, spintronic functionality, mandates a certain level of hybridization of the magnetic orbitals with electrode states. Here we show how a judicious choice of the molecular spin centres determines these critical molecule–electrode contact characteristics. In contrast to late lanthanide analogues, the 4f-orbitals of single bis(phthalocyaninato)-neodymium(III) molecules adsorbed on Cu(100) can be directly accessed by scanning tunnelling microscopy. Hence, they contribute to charge transport, whereas their magnetic moment is sustained as evident from comparing spectroscopic data with ab initio calculations. Our results showcase how tailoring molecular orbitals can yield all-electrically controlled spintronic device concepts.

Date: 2013
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/ncomms3425 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3425

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms3425

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3425