EconPapers    
Economics at your fingertips  
 

MBNL1 and RBFOX2 cooperate to establish a splicing programme involved in pluripotent stem cell differentiation

Julian P. Venables, Laure Lapasset, Gilles Gadea, Philippe Fort, Roscoe Klinck, Manuel Irimia, Emmanuel Vignal, Philippe Thibault, Panagiotis Prinos, Benoit Chabot, Sherif Abou Elela, Pierre Roux, Jean-Marc Lemaitre () and Jamal Tazi ()
Additional contact information
Julian P. Venables: CNRS, Institut de Génétique Moléculaire de Montpellier
Laure Lapasset: CNRS, Institut de Génétique Moléculaire de Montpellier
Gilles Gadea: Université Montpellier 2
Philippe Fort: Université Montpellier 2
Roscoe Klinck: Laboratoire de Génomique Fonctionnelle de l’Université de Sherbrooke
Manuel Irimia: University of Toronto
Emmanuel Vignal: Université Montpellier 2
Philippe Thibault: Laboratoire de Génomique Fonctionnelle de l’Université de Sherbrooke
Panagiotis Prinos: Laboratoire de Génomique Fonctionnelle de l’Université de Sherbrooke
Benoit Chabot: Laboratoire de Génomique Fonctionnelle de l’Université de Sherbrooke
Sherif Abou Elela: Laboratoire de Génomique Fonctionnelle de l’Université de Sherbrooke
Pierre Roux: Université Montpellier 2
Jean-Marc Lemaitre: Université Montpellier 2
Jamal Tazi: CNRS, Institut de Génétique Moléculaire de Montpellier

Nature Communications, 2013, vol. 4, issue 1, 1-10

Abstract: Abstract Reprogramming somatic cells into induced pluripotent stem cells (iPSCs) has provided huge insight into the pathways, mechanisms and transcription factors that control differentiation. Here we use high-throughput RT–PCR technology to take a snapshot of splicing changes in the full spectrum of high- and low-expressed genes during induction of fibroblasts, from several donors, into iPSCs and their subsequent redifferentiation. We uncover a programme of concerted alternative splicing changes involved in late mesoderm differentiation and controlled by key splicing regulators MBNL1 and RBFOX2. These critical splicing adjustments arise early in vertebrate evolution and remain fixed in at least 10 genes (including PLOD2, CLSTN1, ATP2A1, PALM, ITGA6, KIF13A, FMNL3, PPIP5K1, MARK2 and FNIP1), implying that vertebrates require alternative splicing to fully implement the instructions of transcriptional control networks.

Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/ncomms3480 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3480

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms3480

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3480