Highly efficient methane biocatalysis revealed in a methanotrophic bacterium
M. G. Kalyuzhnaya (),
S. Yang,
O. N. Rozova,
N. E. Smalley,
J. Clubb,
A. Lamb,
G. A. Nagana Gowda,
D. Raftery,
Y. Fu,
F. Bringel,
S. Vuilleumier,
D. A. C. Beck,
Y. A. Trotsenko,
V. N. Khmelenina and
M. E. Lidstrom
Additional contact information
M. G. Kalyuzhnaya: University of Washington
S. Yang: University of Washington
O. N. Rozova: G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences
N. E. Smalley: University of Washington
J. Clubb: University of Washington
A. Lamb: University of Washington
G. A. Nagana Gowda: Northwest Metabolomics Research Center, Anesthesiology and Pain Medicine, University of Washington
D. Raftery: Northwest Metabolomics Research Center, Anesthesiology and Pain Medicine, University of Washington
Y. Fu: University of Washington
F. Bringel: Equipe Adaptations et Interactions Microbiennes dans l’Environnement, UMR 7156 UdS – CNRS Génétique Moléculaire, Génomique, Microbiologie, Université de Strasbourg
S. Vuilleumier: Equipe Adaptations et Interactions Microbiennes dans l’Environnement, UMR 7156 UdS – CNRS Génétique Moléculaire, Génomique, Microbiologie, Université de Strasbourg
D. A. C. Beck: University of Washington
Y. A. Trotsenko: G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences
V. N. Khmelenina: G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences
M. E. Lidstrom: University of Washington
Nature Communications, 2013, vol. 4, issue 1, 1-7
Abstract:
Abstract Methane is an essential component of the global carbon cycle and one of the most powerful greenhouse gases, yet it is also a promising alternative source of carbon for the biological production of value-added chemicals. Aerobic methane-consuming bacteria (methanotrophs) represent a potential biological platform for methane-based biocatalysis. Here we use a multi-pronged systems-level approach to reassess the metabolic functions for methane utilization in a promising bacterial biocatalyst. We demonstrate that methane assimilation is coupled with a highly efficient pyrophosphate-mediated glycolytic pathway, which under oxygen limitation participates in a novel form of fermentation-based methanotrophy. This surprising discovery suggests a novel mode of methane utilization in oxygen-limited environments, and opens new opportunities for a modular approach towards producing a variety of excreted chemical products using methane as a feedstock.
Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/ncomms3785 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3785
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms3785
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().