EconPapers    
Economics at your fingertips  
 

Atomic-scale mechanisms of ferroelastic domain-wall-mediated ferroelectric switching

Peng Gao, Jason Britson, Jacob R. Jokisaari, Christopher T. Nelson, Seung-Hyub Baek, Yiran Wang, Chang-Beom Eom, Long-Qing Chen and Xiaoqing Pan ()
Additional contact information
Peng Gao: University of Michigan
Jason Britson: Penn State University
Jacob R. Jokisaari: University of Michigan
Christopher T. Nelson: University of Michigan
Seung-Hyub Baek: University of Wisconsin-Madison
Yiran Wang: University of Michigan
Chang-Beom Eom: University of Wisconsin-Madison
Long-Qing Chen: Penn State University
Xiaoqing Pan: University of Michigan

Nature Communications, 2013, vol. 4, issue 1, 1-9

Abstract: Abstract Polarization switching in ferroelectric thin films occurs via nucleation and growth of 180° domains through a highly inhomogeneous process in which the kinetics are largely controlled by defects, interfaces and pre-existing domain walls. Here we present the first real-time, atomic-scale observations and phase-field simulations of domain switching dominated by pre-existing, but immobile, ferroelastic domains in Pb(Zr0.2Ti0.8)O3 thin films. Our observations reveal a novel hindering effect, which occurs via the formation of a transient layer with a thickness of several unit cells at an otherwise charged interface between a ferroelastic domain and a switched domain. This transient layer possesses a low-magnitude polarization, with a dipole glass structure, resembling the dead layer. The present study provides an atomic level explanation of the hindering of ferroelectric domain motion by ferroelastic domains. Hindering can be overcome either by applying a higher bias or by removing the as-grown ferroelastic domains in fabricated nanostructures.

Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/ncomms3791 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3791

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms3791

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3791