EconPapers    
Economics at your fingertips  
 

Hydrogen-induced nanotunnel opening within semiconductor subsurface

Patrick Soukiassian (), Erich Wimmer, Edvige Celasco, Claudia Giallombardo, Simon Bonanni, Luca Vattuone, Letizia Savio, Antonio Tejeda, Mathieu Silly, Marie D’angelo, Fausto Sirotti and Mario Rocca
Additional contact information
Patrick Soukiassian: Istituto Materiali per Elettronica e Magnetismo—CNR
Erich Wimmer: Materials Design, Inc.
Edvige Celasco: Dipartimento di Fisica dell’Università di Genova
Claudia Giallombardo: Dipartimento di Fisica dell’Università di Genova
Simon Bonanni: Dipartimento di Fisica dell’Università di Genova
Luca Vattuone: Istituto Materiali per Elettronica e Magnetismo—CNR
Letizia Savio: Istituto Materiali per Elettronica e Magnetismo—CNR
Antonio Tejeda: Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin
Mathieu Silly: Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin
Marie D’angelo: Institut des NanoSciences de Paris, CNRS UMR 7588, Université Pierre et Marie Curie
Fausto Sirotti: Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin
Mario Rocca: Istituto Materiali per Elettronica e Magnetismo—CNR

Nature Communications, 2013, vol. 4, issue 1, 1-10

Abstract: Abstract One of the key steps in nanotechnology is our ability to engineer and fabricate low-dimensional nano-objects, such as quantum dots, nanowires, two-dimensional atomic layers or three-dimensional nano-porous systems. Here we report evidence of nanotunnel opening within the subsurface region of a wide band-gap semiconductor, silicon carbide. Such an effect is induced by selective hydrogen/deuterium interaction at the surface, which possesses intrinsic compressive stress. This finding is established with a combination of ab-initio computations, vibrational spectroscopy and synchrotron-radiation-based photoemission. Hydrogen/deuterium-induced puckering of the subsurface Si atoms marks the critical step in this nanotunnel opening. Depending on hydrogen/deuterium coverages, the nanotunnels are either metallic or semiconducting. Dangling bonds generated inside the nanotunnel offer a promising template to capture atoms or molecules. These features open nano-tailoring capabilities towards advanced applications in electronics, chemistry, storage, sensors or biotechnology. Understanding and controlling such a mechanism open routes towards surface/interface functionalization.

Date: 2013
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/ncomms3800 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3800

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms3800

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3800