EconPapers    
Economics at your fingertips  
 

Adaptive strong-field control of chemical dynamics guided by three-dimensional momentum imaging

E. Wells (), C.E. Rallis, M. Zohrabi, R. Siemering, Bethany Jochim, P.R. Andrews, U. Ablikim, B. Gaire, S. De, K.D. Carnes, B. Bergues, R. de Vivie-Riedle, M.F. Kling and I. Ben-Itzhak
Additional contact information
E. Wells: Augustana College
C.E. Rallis: Augustana College
M. Zohrabi: J.R. Macdonald Laboratory, Kansas State University
R. Siemering: Ludwig-Maximilians-Universität München
Bethany Jochim: Augustana College
P.R. Andrews: Augustana College
U. Ablikim: J.R. Macdonald Laboratory, Kansas State University
B. Gaire: J.R. Macdonald Laboratory, Kansas State University
S. De: J.R. Macdonald Laboratory, Kansas State University
K.D. Carnes: J.R. Macdonald Laboratory, Kansas State University
B. Bergues: Max Planck Institute of Quantum Optics
R. de Vivie-Riedle: Ludwig-Maximilians-Universität München
M.F. Kling: J.R. Macdonald Laboratory, Kansas State University
I. Ben-Itzhak: J.R. Macdonald Laboratory, Kansas State University

Nature Communications, 2013, vol. 4, issue 1, 1-9

Abstract: Abstract Shaping ultrafast laser pulses using adaptive feedback can manipulate dynamics in molecular systems, but extracting information from the optimized pulse remains difficult. Experimental time constraints often limit feedback to a single observable, complicating efforts to decipher the underlying mechanisms and parameterize the search process. Here we show, using two strong-field examples, that by rapidly inverting velocity map images of ions to recover the three-dimensional photofragment momentum distribution and incorporating that feedback into the control loop, the specificity of the control objective is markedly increased. First, the complex angular distribution of fragment ions from the nω+C2D4→C2D3++D interaction is manipulated. Second, isomerization of acetylene (nω+C2H2→C2H22+→CH2++C+) is controlled via a barrier-suppression mechanism, a result that is validated by model calculations. Collectively, these experiments comprise a significant advance towards the fundamental goal of actively guiding population to a specified quantum state of a molecule.

Date: 2013
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/ncomms3895 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3895

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms3895

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3895