Quantum coherence induces pulse shape modification in a semiconductor optical amplifier at room temperature
Mirco Kolarczik,
Nina Owschimikow,
Julian Korn,
Benjamin Lingnau,
Yücel Kaptan,
Dieter Bimberg,
Eckehard Schöll,
Kathy Lüdge () and
Ulrike Woggon ()
Additional contact information
Mirco Kolarczik: Institut für Optik und Atomare Physik, Technische Universität Berlin
Nina Owschimikow: Institut für Optik und Atomare Physik, Technische Universität Berlin
Julian Korn: Institut für Theoretische Physik, Technische Universität Berlin
Benjamin Lingnau: Institut für Theoretische Physik, Technische Universität Berlin
Yücel Kaptan: Institut für Optik und Atomare Physik, Technische Universität Berlin
Dieter Bimberg: Institut für Festkörperphysik, Technische Universität Berlin
Eckehard Schöll: Institut für Theoretische Physik, Technische Universität Berlin
Kathy Lüdge: Institut für Theoretische Physik, Technische Universität Berlin
Ulrike Woggon: Institut für Optik und Atomare Physik, Technische Universität Berlin
Nature Communications, 2013, vol. 4, issue 1, 1-7
Abstract:
Abstract Coherence in light–matter interaction is a necessary ingredient if light is used to control the quantum state of a material system. Coherent effects are firmly associated with isolated systems kept at low temperature. The exceedingly fast dephasing in condensed matter environments, in particular at elevated temperatures, may well erase all coherent information in the material at timescales shorter than a laser excitation pulse. Here we show for an ensemble of semiconductor quantum dots that even in the presence of ultrafast dephasing, for suitably designed condensed matter systems quantum-coherent effects are robust enough to be observable at room temperature. Our conclusions are based on an analysis of the reshaping an ultrafast laser pulse undergoes on propagation through a semiconductor quantum dot amplifier. We show that this pulse modification contains the signature of coherent light–matter interaction and can be controlled by adjusting the population of the quantum dots via electrical injection.
Date: 2013
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms3953 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3953
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms3953
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().