EconPapers    
Economics at your fingertips  
 

Tuning a Schottky barrier in a photoexcited topological insulator with transient Dirac cone electron-hole asymmetry

M Hajlaoui, E Papalazarou, J Mauchain, L Perfetti, A Taleb-Ibrahimi, F Navarin, M Monteverde, P Auban-Senzier, C.R. Pasquier, N Moisan, D Boschetto, M Neupane, M.Z. Hasan, T Durakiewicz, Z Jiang, Y Xu, I Miotkowski, Y.P. Chen, S Jia, H.W. Ji, R.J. Cava and M Marsi ()
Additional contact information
M Hajlaoui: Laboratoire de Physique des Solides, CNRS-UMR 8502, Université Paris-Sud
E Papalazarou: Laboratoire de Physique des Solides, CNRS-UMR 8502, Université Paris-Sud
J Mauchain: Laboratoire de Physique des Solides, CNRS-UMR 8502, Université Paris-Sud
L Perfetti: Laboratoire des Solides Irradiés, Ecole Polytechnique-CEA/DSM-CNRS UMR 7642
A Taleb-Ibrahimi: UR1-CNRS/Synchrotron SOLEIL, Saint Aubin BP 48
F Navarin: Laboratoire de Physique des Solides, CNRS-UMR 8502, Université Paris-Sud
M Monteverde: Laboratoire de Physique des Solides, CNRS-UMR 8502, Université Paris-Sud
P Auban-Senzier: Laboratoire de Physique des Solides, CNRS-UMR 8502, Université Paris-Sud
C.R. Pasquier: Laboratoire de Physique des Solides, CNRS-UMR 8502, Université Paris-Sud
N Moisan: Laboratoire d’Optique Appliquée, ENSTA ParisTech, CNRS, Ecole Polytechnique
D Boschetto: Laboratoire d’Optique Appliquée, ENSTA ParisTech, CNRS, Ecole Polytechnique
M Neupane: Princeton University
M.Z. Hasan: Princeton University
T Durakiewicz: Los Alamos National Laboratory
Z Jiang: School of Physics, Georgia Institute of Technology
Y Xu: Purdue University
I Miotkowski: Purdue University
Y.P. Chen: Purdue University
S Jia: Princeton University
H.W. Ji: Princeton University
R.J. Cava: Princeton University
M Marsi: Laboratoire de Physique des Solides, CNRS-UMR 8502, Université Paris-Sud

Nature Communications, 2014, vol. 5, issue 1, 1-8

Abstract: Abstract The advent of Dirac materials has made it possible to realize two-dimensional gases of relativistic fermions with unprecedented transport properties in condensed matter. Their photoconductive control with ultrafast light pulses is opening new perspectives for the transmission of current and information. Here we show that the interplay of surface and bulk transient carrier dynamics in a photoexcited topological insulator can control an essential parameter for photoconductivity—the balance between excess electrons and holes in the Dirac cone. This can result in a strongly out of equilibrium gas of hot relativistic fermions, characterized by a surprisingly long lifetime of more than 50 ps, and a simultaneous transient shift of chemical potential by as much as 100 meV. The unique properties of this transient Dirac cone make it possible to tune with ultrafast light pulses a relativistic nanoscale Schottky barrier, in a way that is impossible with conventional optoelectronic materials.

Date: 2014
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/ncomms4003 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4003

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms4003

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4003