EconPapers    
Economics at your fingertips  
 

Distinct structural features of TFAM drive mitochondrial DNA packaging versus transcriptional activation

Huu B. Ngo, Geoffrey A. Lovely, Rob Phillips and David C. Chan ()
Additional contact information
Huu B. Ngo: California Institute of Technology
Geoffrey A. Lovely: California Institute of Technology
Rob Phillips: California Institute of Technology
David C. Chan: California Institute of Technology

Nature Communications, 2014, vol. 5, issue 1, 1-12

Abstract: Abstract TFAM (transcription factor A, mitochondrial) is a DNA-binding protein that activates transcription at the two major promoters of mitochondrial DNA (mtDNA)—the light strand promoter (LSP) and the heavy strand promoter 1 (HSP1). Equally important, it coats and packages the mitochondrial genome. TFAM has been shown to impose a U-turn on LSP DNA; however, whether this distortion is relevant at other sites is unknown. Here we present crystal structures of TFAM bound to HSP1 and to nonspecific DNA. In both, TFAM similarly distorts the DNA into a U-turn. Yet, TFAM binds to HSP1 in the opposite orientation from LSP explaining why transcription from LSP requires DNA bending, whereas transcription at HSP1 does not. Moreover, the crystal structures reveal dimerization of DNA-bound TFAM. This dimerization is dispensable for DNA bending and transcriptional activation but is important in DNA compaction. We propose that TFAM dimerization enhances mitochondrial DNA compaction by promoting looping of the DNA.

Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/ncomms4077 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4077

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms4077

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4077