Phase-transition-driven growth of compound semiconductor crystals from ordered metastable nanorods
R. Mainz (),
A. Singh (),
S. Levcenko,
M. Klaus,
C. Genzel,
K. M. Ryan and
T. Unold
Additional contact information
R. Mainz: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1
A. Singh: University of Limerick
S. Levcenko: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1
M. Klaus: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1
C. Genzel: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1
K. M. Ryan: University of Limerick
T. Unold: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1
Nature Communications, 2014, vol. 5, issue 1, 1-10
Abstract:
Abstract In polycrystalline semiconductors, grain boundaries are often sites with prevalence for electron-hole recombination and various strategies have been followed to minimize grain boundary areas. Generally, large grains or epitaxial films can be obtained at high temperatures. However, high growth temperatures limit the choice of substrate materials and can prove elusive for semiconductors comprising volatile elements such as kesterite Cu2ZnSnS4. Here we show that this limitation can be overcome by a transition of a matrix of densely packed metastable nanorods into large stable grains. Real-time analysis reveals that the grain growth is driven by a direct, isocompositional solid-state phase transition. Following this route, semiconductor films with a large-grained microstructure can be achieved within a few seconds at relatively low temperatures. Grain size as well as electrical and optical properties of the resulting films can be controlled via the heating rate. This synthesis route opens new possibilities for the fabrication of semiconductor crystals for photoelectric devices with tailored microstructures.
Date: 2014
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms4133 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4133
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms4133
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().