EconPapers    
Economics at your fingertips  
 

Polariton-generated intensity squeezing in semiconductor micropillars

T. Boulier, M. Bamba, A. Amo, C. Adrados, A. Lemaitre, E. Galopin, I. Sagnes, J. Bloch, C. Ciuti, E. Giacobino and A. Bramati ()
Additional contact information
T. Boulier: Laboratoire Kastler Brossel, Université Pierre et Marie Curie, Ecole Normale Supérieure and CNRS
M. Bamba: Osaka University, 1-1 Machikaneyama
A. Amo: Laboratoire Kastler Brossel, Université Pierre et Marie Curie, Ecole Normale Supérieure and CNRS
C. Adrados: Laboratoire Kastler Brossel, Université Pierre et Marie Curie, Ecole Normale Supérieure and CNRS
A. Lemaitre: Laboratoire Photonique et Nanostructures, CNRS, Route de Nozay
E. Galopin: Laboratoire Photonique et Nanostructures, CNRS, Route de Nozay
I. Sagnes: Laboratoire Photonique et Nanostructures, CNRS, Route de Nozay
J. Bloch: Laboratoire Photonique et Nanostructures, CNRS, Route de Nozay
C. Ciuti: Laboratoire Matériaux et Phénomènes Quantique, Université Paris Diderot et CNRS
E. Giacobino: Laboratoire Kastler Brossel, Université Pierre et Marie Curie, Ecole Normale Supérieure and CNRS
A. Bramati: Laboratoire Kastler Brossel, Université Pierre et Marie Curie, Ecole Normale Supérieure and CNRS

Nature Communications, 2014, vol. 5, issue 1, 1-7

Abstract: Abstract The generation of squeezed and entangled light fields is a crucial ingredient for the implementation of quantum information protocols. In this context, semiconductor materials offer a strong potential for the implementation of on-chip devices operating at the quantum level. Here we demonstrate a novel source of continuous variable squeezed light in pillar-shaped semiconductor microcavities in the strong coupling regime. Degenerate polariton four-wave mixing is obtained by exciting the pillar at normal incidence. We observe a bistable behaviour and we demonstrate the generation of squeezing near the turning point of the bistability curve. The confined pillar geometry allows for a larger amount of squeezing than planar microcavities due to the discrete energy levels protected from excess noise. By analysing the noise of the emitted light, we obtain a measured intensity squeezing of 20.3%, inferred to be 35.8% after corrections.

Date: 2014
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/ncomms4260 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4260

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms4260

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4260