Optogenetic astrocyte activation modulates response selectivity of visual cortex neurons in vivo
Gertrudis Perea (),
Aimei Yang,
Edward S. Boyden and
Mriganka Sur
Additional contact information
Gertrudis Perea: Picower Institute for Learning and Memory, Massachusetts Institute of Technology
Aimei Yang: Media Lab, Massachusetts Institute of Technology
Edward S. Boyden: Media Lab, Massachusetts Institute of Technology
Mriganka Sur: Picower Institute for Learning and Memory, Massachusetts Institute of Technology
Nature Communications, 2014, vol. 5, issue 1, 1-12
Abstract:
Abstract Astrocytes play important roles in synaptic transmission and plasticity. Despite in vitro evidence, their causal contribution to cortical network activity and sensory information processing in vivo remains unresolved. Here we report that selective photostimulation of astrocytes with channelrhodopsin-2 in primary visual cortex enhances both excitatory and inhibitory synaptic transmission, through the activation of type 1a metabotropic glutamate receptors. Photostimulation of astrocytes in vivo increases the spontaneous firing of parvalbumin-positive (PV+) inhibitory neurons, while excitatory and somatostatin-positive (SOM+) neurons show either an increase or decrease in their activity. Moreover, PV+ neurons show increased baseline visual responses and reduced orientation selectivity to visual stimuli, whereas excitatory and SOM+ neurons show either increased or decreased baseline visual responses together with complementary changes in orientation selectivity. Therefore, astrocyte activation, through the dual control of excitatory and inhibitory drive, influences neuronal integrative features critical for sensory information processing.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.nature.com/articles/ncomms4262 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4262
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms4262
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().