All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer
C. Sturm,
D. Tanese,
H.S. Nguyen,
H. Flayac,
E. Galopin,
A. Lemaître,
I. Sagnes,
D. Solnyshkov,
A. Amo,
G. Malpuech and
J. Bloch ()
Additional contact information
C. Sturm: Laboratoire de Photonique et de Nanostructures, LPN/CNRS, Route de Nozay
D. Tanese: Laboratoire de Photonique et de Nanostructures, LPN/CNRS, Route de Nozay
H.S. Nguyen: Laboratoire de Photonique et de Nanostructures, LPN/CNRS, Route de Nozay
H. Flayac: Institut Pascal, PHOTON-N2, Clermont Université, Université Blaise Pascal, CNRS, 24 avenue des Landais
E. Galopin: Laboratoire de Photonique et de Nanostructures, LPN/CNRS, Route de Nozay
A. Lemaître: Laboratoire de Photonique et de Nanostructures, LPN/CNRS, Route de Nozay
I. Sagnes: Laboratoire de Photonique et de Nanostructures, LPN/CNRS, Route de Nozay
D. Solnyshkov: Institut Pascal, PHOTON-N2, Clermont Université, Université Blaise Pascal, CNRS, 24 avenue des Landais
A. Amo: Laboratoire de Photonique et de Nanostructures, LPN/CNRS, Route de Nozay
G. Malpuech: Institut Pascal, PHOTON-N2, Clermont Université, Université Blaise Pascal, CNRS, 24 avenue des Landais
J. Bloch: Laboratoire de Photonique et de Nanostructures, LPN/CNRS, Route de Nozay
Nature Communications, 2014, vol. 5, issue 1, 1-7
Abstract:
Abstract Quantum fluids based on light is a highly developing research field, since they provide a nonlinear platform for developing optical functionalities and quantum simulators. An important issue in this context is the ability to coherently control the properties of the fluid. Here we propose an all-optical approach for controlling the phase of a flow of cavity-polaritons, making use of their strong interactions with localized excitons. Here we illustrate the potential of this method by implementing a compact exciton–polariton interferometer, which output intensity and polarization can be optically controlled. This interferometer is cascadable with already reported polariton devices and is promising for future polaritonic quantum optic experiments. Complex phase patterns could be also engineered using this optical method, providing a key tool to build photonic artificial gauge fields.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/ncomms4278 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4278
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms4278
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().