Synchronous precessional motion of multiple domain walls in a ferromagnetic nanowire by perpendicular field pulses
June-Seo Kim,
Mohamad-Assaad Mawass,
André Bisig,
Benjamin Krüger,
Robert M. Reeve,
Tomek Schulz,
Felix Büttner,
Jungbum Yoon,
Chun-Yeol You (),
Markus Weigand,
Hermann Stoll,
Gisela Schütz,
Henk J. M. Swagten,
Bert Koopmans,
Stefan Eisebitt and
Mathias Kläui ()
Additional contact information
June-Seo Kim: Institut für Physik, Johannes Gutenberg-Universität Mainz
Mohamad-Assaad Mawass: Institut für Physik, Johannes Gutenberg-Universität Mainz
André Bisig: Institut für Physik, Johannes Gutenberg-Universität Mainz
Benjamin Krüger: Institut für Physik, Johannes Gutenberg-Universität Mainz
Robert M. Reeve: Institut für Physik, Johannes Gutenberg-Universität Mainz
Tomek Schulz: Institut für Physik, Johannes Gutenberg-Universität Mainz
Felix Büttner: Institut für Physik, Johannes Gutenberg-Universität Mainz
Jungbum Yoon: Inha University
Chun-Yeol You: Inha University
Markus Weigand: Max Planck Institute for Intelligent Systems
Hermann Stoll: Max Planck Institute for Intelligent Systems
Gisela Schütz: Max Planck Institute for Intelligent Systems
Henk J. M. Swagten: Center for NanoMaterials, Eindhoven University of Technology
Bert Koopmans: Center for NanoMaterials, Eindhoven University of Technology
Stefan Eisebitt: Institut für Optik und Atomare Physik, Technische Universität Berlin
Mathias Kläui: Institut für Physik, Johannes Gutenberg-Universität Mainz
Nature Communications, 2014, vol. 5, issue 1, 1-8
Abstract:
Abstract Magnetic storage and logic devices based on magnetic domain wall motion rely on the precise and synchronous displacement of multiple domain walls. The conventional approach using magnetic fields does not allow for the synchronous motion of multiple domains. As an alternative method, synchronous current-induced domain wall motion was studied, but the required high-current densities prevent widespread use in devices. Here we demonstrate a radically different approach: we use out-of-plane magnetic field pulses to move in-plane domains, thus combining field-induced magnetization dynamics with the ability to move neighbouring domain walls in the same direction. Micromagnetic simulations suggest that synchronous permanent displacement of multiple magnetic walls can be achieved by using transverse domain walls with identical chirality combined with regular pinning sites and an asymmetric pulse. By performing scanning transmission X-ray microscopy, we are able to experimentally demonstrate in-plane magnetized domain wall motion due to out-of-plane magnetic field pulses.
Date: 2014
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms4429 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4429
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms4429
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().