Bose–Einstein condensation in an ultra-hot gas of pumped magnons
Alexander A. Serga (),
Vasil S. Tiberkevich,
Christian W. Sandweg,
Vitaliy I. Vasyuchka,
Dmytro A. Bozhko,
Andrii V. Chumak,
Timo Neumann,
Björn Obry,
Gennadii A. Melkov,
Andrei N. Slavin and
Burkard Hillebrands
Additional contact information
Alexander A. Serga: Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern
Vasil S. Tiberkevich: Oakland University
Christian W. Sandweg: Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern
Vitaliy I. Vasyuchka: Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern
Dmytro A. Bozhko: Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern
Andrii V. Chumak: Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern
Timo Neumann: Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern
Björn Obry: Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern
Gennadii A. Melkov: Faculty of Radiophysics, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
Andrei N. Slavin: Oakland University
Burkard Hillebrands: Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern
Nature Communications, 2014, vol. 5, issue 1, 1-8
Abstract:
Abstract Bose–Einstein condensation of quasi-particles such as excitons, polaritons, magnons and photons is a fascinating quantum mechanical phenomenon. Unlike the Bose–Einstein condensation of real particles (like atoms), these processes do not require low temperatures, since the high densities of low-energy quasi-particles needed for the condensate to form can be produced via external pumping. Here we demonstrate that such a pumping can create remarkably high effective temperatures in a narrow spectral region of the lowest energy states in a magnon gas, resulting in strikingly unexpected transitional dynamics of Bose–Einstein magnon condensate: the density of the condensate increases immediately after the external magnon flow is switched off and initially decreases if it is switched on again. This behaviour finds explanation in a nonlinear ‘evaporative supercooling’ mechanism that couples the low-energy magnons overheated by pumping with all the other thermal magnons, removing the excess heat, and allowing Bose–Einstein condensate formation.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/ncomms4452 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4452
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms4452
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().