Frequency domain optical parametric amplification
Bruno E. Schmidt (),
Nicolas Thiré,
Maxime Boivin,
Antoine Laramée,
François Poitras,
Guy Lebrun,
Tsuneyuki Ozaki,
Heide Ibrahim and
François Légaré ()
Additional contact information
Bruno E. Schmidt: Institut National de la Recherche Scientifique, Centre Énergie Matériaux et Télécommunications
Nicolas Thiré: Institut National de la Recherche Scientifique, Centre Énergie Matériaux et Télécommunications
Maxime Boivin: Institut National de la Recherche Scientifique, Centre Énergie Matériaux et Télécommunications
Antoine Laramée: Institut National de la Recherche Scientifique, Centre Énergie Matériaux et Télécommunications
François Poitras: Institut National de la Recherche Scientifique, Centre Énergie Matériaux et Télécommunications
Guy Lebrun: Institut National de la Recherche Scientifique, Centre Énergie Matériaux et Télécommunications
Tsuneyuki Ozaki: Institut National de la Recherche Scientifique, Centre Énergie Matériaux et Télécommunications
Heide Ibrahim: Institut National de la Recherche Scientifique, Centre Énergie Matériaux et Télécommunications
François Légaré: Institut National de la Recherche Scientifique, Centre Énergie Matériaux et Télécommunications
Nature Communications, 2014, vol. 5, issue 1, 1-8
Abstract:
Abstract Today’s ultrafast lasers operate at the physical limits of optical materials to reach extreme performances. Amplification of single-cycle laser pulses with their corresponding octave-spanning spectra still remains a formidable challenge since the universal dilemma of gain narrowing sets limits for both real level pumped amplifiers as well as parametric amplifiers. We demonstrate that employing parametric amplification in the frequency domain rather than in time domain opens up new design opportunities for ultrafast laser science, with the potential to generate single-cycle multi-terawatt pulses. Fundamental restrictions arising from phase mismatch and damage threshold of nonlinear laser crystals are not only circumvented but also exploited to produce a synergy between increased seed spectrum and increased pump energy. This concept was successfully demonstrated by generating carrier envelope phase stable, 1.43 mJ two-cycle pulses at 1.8 μm wavelength.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/ncomms4643 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4643
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms4643
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().