Epistasis and natural selection shape the mutational architecture of complex traits
Adam G. Jones (),
Reinhard Bürger and
Stevan J. Arnold
Additional contact information
Adam G. Jones: Texas A&M University
Reinhard Bürger: Institut für Mathematik, Universität Wien
Stevan J. Arnold: Oregon State University
Nature Communications, 2014, vol. 5, issue 1, 1-10
Abstract:
Abstract The evolutionary trajectories of complex traits are constrained by levels of genetic variation as well as genetic correlations among traits. As the ultimate source of all genetic variation is mutation, the distribution of mutations entering populations profoundly affects standing variation and genetic correlations. Here we use an individual-based simulation model to investigate how natural selection and gene interactions (that is, epistasis) shape the evolution of mutational processes affecting complex traits. We find that the presence of epistasis allows natural selection to mould the distribution of mutations, such that mutational effects align with the selection surface. Consequently, novel mutations tend to be more compatible with the current forces of selection acting on the population. These results suggest that in many cases mutational effects should be seen as an outcome of natural selection rather than as an unbiased source of genetic variation that is independent of other evolutionary processes.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/ncomms4709 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4709
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms4709
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().