Subfemtosecond steering of hydrocarbon deprotonation through superposition of vibrational modes
A.S. Alnaser (),
M. Kübel,
R. Siemering,
B. Bergues,
Nora G Kling,
K.J. Betsch,
Y. Deng,
J. Schmidt,
Z.A. Alahmed,
A.M. Azzeer,
J. Ullrich,
I. Ben-Itzhak,
R. Moshammer,
U. Kleineberg,
F. Krausz,
R. de Vivie-Riedle and
M.F. Kling ()
Additional contact information
A.S. Alnaser: American University of Sharjah
M. Kübel: Ludwig-Maximilians-Universität München
R. Siemering: Ludwig-Maximilians-Universität München
B. Bergues: Max-Planck-Institut für Quantenoptik
Nora G Kling: J. R. Macdonald Laboratory, Kansas-State University
K.J. Betsch: Max-Planck-Institut für Quantenoptik
Y. Deng: Max-Planck-Institut für Quantenoptik
J. Schmidt: Ludwig-Maximilians-Universität München
Z.A. Alahmed: King-Saud University
A.M. Azzeer: King-Saud University
J. Ullrich: Max-Planck-Institut für Kernphysik
I. Ben-Itzhak: J. R. Macdonald Laboratory, Kansas-State University
R. Moshammer: Max-Planck-Institut für Kernphysik
U. Kleineberg: Ludwig-Maximilians-Universität München
F. Krausz: Max-Planck-Institut für Quantenoptik
R. de Vivie-Riedle: Ludwig-Maximilians-Universität München
M.F. Kling: Max-Planck-Institut für Quantenoptik
Nature Communications, 2014, vol. 5, issue 1, 1-6
Abstract:
Abstract Subfemtosecond control of the breaking and making of chemical bonds in polyatomic molecules is poised to open new pathways for the laser-driven synthesis of chemical products. The break-up of the C-H bond in hydrocarbons is an ubiquitous process during laser-induced dissociation. While the yield of the deprotonation of hydrocarbons has been successfully manipulated in recent studies, full control of the reaction would also require a directional control (that is, which C-H bond is broken). Here, we demonstrate steering of deprotonation from symmetric acetylene molecules on subfemtosecond timescales before the break-up of the molecular dication. On the basis of quantum mechanical calculations, the experimental results are interpreted in terms of a novel subfemtosecond control mechanism involving non-resonant excitation and superposition of vibrational degrees of freedom. This mechanism permits control over the directionality of chemical reactions via vibrational excitation on timescales defined by the subcycle evolution of the laser waveform.
Date: 2014
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms4800 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4800
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms4800
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().