Observation of quantum-tunnelling-modulated spin texture in ultrathin topological insulator Bi2Se3 films
Madhab Neupane,
Anthony Richardella,
Jaime Sánchez-Barriga,
SuYang Xu,
Nasser Alidoust,
Ilya Belopolski,
Chang Liu,
Guang Bian,
Duming Zhang,
Dmitry Marchenko,
Andrei Varykhalov,
Oliver Rader,
Mats Leandersson,
Thiagarajan Balasubramanian,
Tay-Rong Chang,
Horng-Tay Jeng,
Susmita Basak,
Hsin Lin,
Arun Bansil,
Nitin Samarth and
M. Zahid Hasan ()
Additional contact information
Madhab Neupane: Joseph Henry Laboratory, Princeton University
Anthony Richardella: The Pennsylvania State University, University Park
Jaime Sánchez-Barriga: Helmholtz-Zentrum Berlin für Materialien und Energie, Elektronenspeicherring BESSY II
SuYang Xu: Joseph Henry Laboratory, Princeton University
Nasser Alidoust: Joseph Henry Laboratory, Princeton University
Ilya Belopolski: Joseph Henry Laboratory, Princeton University
Chang Liu: Joseph Henry Laboratory, Princeton University
Guang Bian: Joseph Henry Laboratory, Princeton University
Duming Zhang: The Pennsylvania State University, University Park
Dmitry Marchenko: Helmholtz-Zentrum Berlin für Materialien und Energie, Elektronenspeicherring BESSY II
Andrei Varykhalov: Helmholtz-Zentrum Berlin für Materialien und Energie, Elektronenspeicherring BESSY II
Oliver Rader: Helmholtz-Zentrum Berlin für Materialien und Energie, Elektronenspeicherring BESSY II
Mats Leandersson: MAX-lab
Thiagarajan Balasubramanian: MAX-lab
Tay-Rong Chang: National Tsing Hua University
Horng-Tay Jeng: National Tsing Hua University
Susmita Basak: Northeastern University
Hsin Lin: Graphene Research Centre, National University of
Arun Bansil: Northeastern University
Nitin Samarth: The Pennsylvania State University, University Park
M. Zahid Hasan: Joseph Henry Laboratory, Princeton University
Nature Communications, 2014, vol. 5, issue 1, 1-7
Abstract:
Abstract Understanding the spin-texture behaviour of boundary modes in ultrathin topological insulator films is critically essential for the design and fabrication of functional nanodevices. Here, by using spin-resolved photoemission spectroscopy with p-polarized light in topological insulator Bi2Se3 thin films, we report tunnelling-dependent evolution of spin configuration in topological insulator thin films across the metal-to-insulator transition. We report a systematic binding energy- and wavevector-dependent spin polarization for the topological surface electrons in the ultrathin gapped-Dirac-cone limit. The polarization decreases significantly with enhanced tunnelling realized systematically in thin insulating films, whereas magnitude of the polarization saturates to the bulk limit faster at larger wavevectors in thicker metallic films. We present a theoretical model that captures this delicate relationship between quantum tunnelling and Fermi surface spin polarization. Our high-resolution spin-based spectroscopic results suggest that the polarization current can be tuned to zero in thin insulating films forming the basis for a future spin-switch nanodevice.
Date: 2014
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms4841 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4841
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms4841
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().