EconPapers    
Economics at your fingertips  
 

Enolate chemistry with anion–π interactions

Yingjie Zhao, Naomi Sakai and Stefan Matile ()
Additional contact information
Yingjie Zhao: University of Geneva
Naomi Sakai: University of Geneva
Stefan Matile: University of Geneva

Nature Communications, 2014, vol. 5, issue 1, 1-5

Abstract: Abstract Anion–π interactions occur on the surface of π-acidic aromatic planes with positive quadrupole moments. Their ability to contribute to the binding and transport of anions has been demonstrated recently. However, their ability to stabilize anionic reactive intermediates and transition states remains essentially unexplored. This situation is contrary to the recognized importance of the complementary cation–π interactions to catalyse most important reactions in biology and chemistry. In this report, we provide direct experimental evidence that already single unoptimized anion–π interactions can stabilize enolates by almost two pKa units. The addition of these anion-π-stabilized reactive enolate intermediates to enones and nitroolefins occurs with transition-state stabilizations of up to 11 kJ mol−1, and anionic cascade reactions accelerate on π-acidic surfaces. These findings are significant because enolate chemistry is central in chemistry and biology, and they will stimulate the use of anion-π interactions in catalysis in the broadest sense.

Date: 2014
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/ncomms4911 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4911

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms4911

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4911