Cooperativity and equilibrium with FOXA1 define the androgen receptor transcriptional program
Hong-Jian Jin,
Jonathan C. Zhao,
Longtao Wu,
Jung Kim and
Jindan Yu ()
Additional contact information
Hong-Jian Jin: Northwestern University Feinberg School of Medicine
Jonathan C. Zhao: Northwestern University Feinberg School of Medicine
Longtao Wu: Northwestern University Feinberg School of Medicine
Jung Kim: Northwestern University Feinberg School of Medicine
Jindan Yu: Northwestern University Feinberg School of Medicine
Nature Communications, 2014, vol. 5, issue 1, 1-14
Abstract:
Abstract The pioneering factor FOXA1 opens chromatin to facilitate androgen receptor (AR) binding to prostate-specific genes. How FOXA1 controls the AR cistrome, however, is incompletely understood. Here we show that AR directly binds chromatin through the androgen response elements (AREs). FOXA1 is not required for AR–chromatin interaction, but instrumental in recruiting AR to low-affinity half-AREs by opening local chromatin around adjacent FKHD sites. Too much FOXA1 creates excessive open chromatin regions, which serve as reservoirs that retain AR via abundant half-AREs, thereby reducing its availability for specific sites. FOXA1 downregulation, by contrast, relinquishes AR to permissively bind AREs across the genome, resulting in substantial AR-binding events and AR target gene expression even in the absence of androgen. Taken together, our data illustrate the mechanistic details by which cooperativity and equilibrium with FOXA1 define AR cistrome and reveal a previously unknown function of FOXA1 in inhibiting AR signalling and castration-resistant prostate cancer growth.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/ncomms4972 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4972
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms4972
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().