Interferometry with non-classical motional states of a Bose–Einstein condensate
S. van Frank,
A. Negretti,
T. Berrada,
R. Bücker,
S. Montangero,
J.-F. Schaff,
T. Schumm,
T. Calarco and
J. Schmiedmayer ()
Additional contact information
S. van Frank: Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2
A. Negretti: Zentrum für Optische Quantentechnologien, Universität Hamburg, The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149
T. Berrada: Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2
R. Bücker: Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2
S. Montangero: Institut für Quanteninformationsverarbeitung, Universität Ulm, Albert-Einstein-Allee 11
J.-F. Schaff: Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2
T. Schumm: Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2
T. Calarco: Institut für Quanteninformationsverarbeitung, Universität Ulm, Albert-Einstein-Allee 11
J. Schmiedmayer: Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2
Nature Communications, 2014, vol. 5, issue 1, 1-6
Abstract:
Abstract The Ramsey interferometer is a prime example of precise control at the quantum level. It is usually implemented using internal states of atoms, molecules or ions, for which powerful manipulation procedures are now available. Whether it is possible to control external degrees of freedom of more complex, interacting many-body systems at this level remained an open question. Here we demonstrate a two-pulse Ramsey-type interferometer for non-classical motional states of a Bose–Einstein condensate in an anharmonic trap. The control sequences used to manipulate the condensate wavefunction are obtained from optimal control theory and are directly optimized to maximize the interferometric contrast. They permit a fast manipulation of the atomic ensemble compared to the intrinsic decay processes and many-body dephasing effects. This allows us to reach an interferometric contrast of 92% in the experimental implementation.
Date: 2014
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms5009 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5009
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms5009
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().