Lasing from active optomechanical resonators
T. Czerniuk (),
C. Brüggemann,
J. Tepper,
S. Brodbeck,
C. Schneider,
M. Kamp,
S. Höfling,
B. A. Glavin,
D. R. Yakovlev,
A. V. Akimov and
M. Bayer
Additional contact information
T. Czerniuk: Experimentelle Physik 2, TU Dortmund
C. Brüggemann: Experimentelle Physik 2, TU Dortmund
J. Tepper: Experimentelle Physik 2, TU Dortmund
S. Brodbeck: Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen-Center for Complex Material Systems, University of Würzburg
C. Schneider: Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen-Center for Complex Material Systems, University of Würzburg
M. Kamp: Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen-Center for Complex Material Systems, University of Würzburg
S. Höfling: Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen-Center for Complex Material Systems, University of Würzburg
B. A. Glavin: V. E. Lashkaryov Institute of Semiconductor Physics
D. R. Yakovlev: Experimentelle Physik 2, TU Dortmund
A. V. Akimov: A. F. Ioffe Physical-Technical Institute, Russian Academy of Sciences
M. Bayer: Experimentelle Physik 2, TU Dortmund
Nature Communications, 2014, vol. 5, issue 1, 1-6
Abstract:
Abstract Planar microcavities with distributed Bragg reflectors (DBRs) host, besides confined optical modes, also mechanical resonances due to stop bands in the phonon dispersion relation of the DBRs. These resonances have frequencies in the 10- to 100-GHz range, depending on the resonator’s optical wavelength, with quality factors exceeding 1,000. The interaction of photons and phonons in such optomechanical systems can be drastically enhanced, opening a new route towards the manipulation of light. Here we implemented active semiconducting layers into the microcavity to obtain a vertical-cavity surface-emitting laser (VCSEL). Thereby, three resonant excitations—photons, phonons and electrons—can interact strongly with each other providing modulation of the VCSEL laser emission: a picosecond strain pulse injected into the VCSEL excites long-living mechanical resonances therein. As a result, modulation of the lasing intensity at frequencies up to 40 GHz is observed. From these findings, prospective applications of active optomechanical resonators integrated into nanophotonic circuits may emerge.
Date: 2014
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms5038 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5038
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms5038
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().