Roaming dynamics in radical addition–elimination reactions
Baptiste Joalland,
Yuanyuan Shi,
Alexander Kamasah,
Arthur G. Suits () and
Alexander M. Mebel ()
Additional contact information
Baptiste Joalland: Wayne State University
Yuanyuan Shi: Wayne State University
Alexander Kamasah: Wayne State University
Arthur G. Suits: Wayne State University
Alexander M. Mebel: Florida International University
Nature Communications, 2014, vol. 5, issue 1, 1-6
Abstract:
Abstract Radical addition–elimination reactions are a major pathway for transformation of unsaturated hydrocarbons. In the gas phase, these reactions involve formation of a transient strongly bound intermediate. However, the detailed mechanism and dynamics for these reactions remain unclear. Here we show, for reaction of chlorine atoms with butenes, that the Cl addition–HCl elimination pathway occurs from an abstraction-like Cl-H-C geometry rather than a conventional three-centre or four-centre transition state. Furthermore, access to this geometry is attained by roaming excursions of the Cl atom from the initially formed adduct. In effect, the alkene π cloud serves to capture the Cl atom and hold it, allowing many subsequent opportunities for the energized intermediate to find a suitable approach to the abstraction geometry. These bimolecular roaming reactions are closely related to the roaming radical dynamics recently discovered to play an important role in unimolecular reactions.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/ncomms5064 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5064
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms5064
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().