Collective fluorescence switching of counterion-assembled dyes in polymer nanoparticles
Andreas Reisch,
Pascal Didier,
Ludovic Richert,
Sule Oncul,
Youri Arntz,
Yves Mély and
Andrey S. Klymchenko ()
Additional contact information
Andreas Reisch: Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie
Pascal Didier: Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie
Ludovic Richert: Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie
Sule Oncul: Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie
Youri Arntz: Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie
Yves Mély: Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie
Andrey S. Klymchenko: Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie
Nature Communications, 2014, vol. 5, issue 1, 1-9
Abstract:
Abstract The current challenge in the field of fluorescent nanoparticles (NPs) for bioimaging is to achieve extreme brightness and external control of their emission using biodegradable materials. Here we propose a new concept of fluorescent polymer NPs, doped with ionic liquid-like salts of a cationic dye (octadecyl rhodamine B) with a bulky hydrophobic counterion (fluorinated tetraphenylborate) that serves as spacer minimizing dye aggregation and self-quenching. The obtained 40-nm poly(D,L-lactide-co-glycolide) NPs containing up to 500 dyes are brighter than quantum dots and exhibit photo-induced reversible on/off fluorescence switching, never reported for dye-doped NPs. We show that this collective switching of hundreds of dyes is due to ultrafast excitation energy transfer and can be used for super-resolution imaging. These NPs, being spontaneously endocytosed by living cells, feature high signal-to-noise ratio and absence of toxicity. The counterion-based concept opens the way to a new class of nanomaterials for sensing, imaging and light harvesting.
Date: 2014
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms5089 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5089
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms5089
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().