An artificial primitive mimic of the Gramicidin-A channel
Mihail Barboiu (),
Yann Le Duc,
Arnaud Gilles,
Pierre-André Cazade,
Mathieu Michau,
Yves Marie Legrand,
Arie van der Lee,
Benoît Coasne,
Paria Parvizi,
Joshua Post and
Thomas Fyles
Additional contact information
Mihail Barboiu: Adaptive Supramolecular Nanosystems Group, Institut Européen des Membranes, ENSCM-UMII- UMR-CNRS5635, Place Eugène Bataillon CC047
Yann Le Duc: Adaptive Supramolecular Nanosystems Group, Institut Européen des Membranes, ENSCM-UMII- UMR-CNRS5635, Place Eugène Bataillon CC047
Arnaud Gilles: Adaptive Supramolecular Nanosystems Group, Institut Européen des Membranes, ENSCM-UMII- UMR-CNRS5635, Place Eugène Bataillon CC047
Pierre-André Cazade: Institut Charles Gerhardt Montpellier (ICGM), UMR 5253 CNRS/ENSCM/UMII, 8 rue de l’Ecole Normale
Mathieu Michau: Adaptive Supramolecular Nanosystems Group, Institut Européen des Membranes, ENSCM-UMII- UMR-CNRS5635, Place Eugène Bataillon CC047
Yves Marie Legrand: Adaptive Supramolecular Nanosystems Group, Institut Européen des Membranes, ENSCM-UMII- UMR-CNRS5635, Place Eugène Bataillon CC047
Arie van der Lee: Adaptive Supramolecular Nanosystems Group, Institut Européen des Membranes, ENSCM-UMII- UMR-CNRS5635, Place Eugène Bataillon CC047
Benoît Coasne: Institut Charles Gerhardt Montpellier (ICGM), UMR 5253 CNRS/ENSCM/UMII, 8 rue de l’Ecole Normale
Paria Parvizi: University of Victoria
Joshua Post: University of Victoria
Thomas Fyles: University of Victoria
Nature Communications, 2014, vol. 5, issue 1, 1-8
Abstract:
Abstract Gramicidin A (gA) is the simplest known natural channel, and important progress in improving conduction activity has previously been obtained with modified natural gAs. However, simple artificial systems mimicking the gA functions are unknown. Here we show that gA can be mimicked using a simple synthetic triazole or ‘T-channel’ forming compound (TCT), having similar constitutional functions as the natural gAs. As in gA channels, the carbonyl moieties of the TCT, which point toward the T-channel core and surround the transport direction, are solvated by water. The net-dipolar alignment of water molecules along the chiral pore surfaces influences the conduction of protons/ions, envisioned to diffuse along dipolar hydrophilic pathways. Theoretical simulations and experimental assays reveal that the conduction through the T-channel, similar to that in gA, presents proton/water conduction, cation/anion selectivity and large open channel-conductance states. T-channels—associating supramolecular chirality with dipolar water alignment—represent an artificial primitive mimic of gA.
Date: 2014
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms5142 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5142
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms5142
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().