Reversible electric-field control of magnetization at oxide interfaces
F. A. Cuellar,
Y. H. Liu,
J. Salafranca,
N. Nemes,
E. Iborra,
G. Sanchez-Santolino,
M. Varela,
M. Garcia Hernandez,
J. W. Freeland,
M. Zhernenkov,
M. R. Fitzsimmons,
S. Okamoto,
S. J. Pennycook,
M. Bibes,
A. Barthélémy,
S.G.E. te Velthuis,
Z. Sefrioui,
C. Leon and
J. Santamaria ()
Additional contact information
F. A. Cuellar: GFMC, Universidad Complutense Madrid
Y. H. Liu: Argonne National Laboratory
J. Salafranca: GFMC, Universidad Complutense Madrid
N. Nemes: GFMC, Universidad Complutense Madrid
E. Iborra: ETSIT, Universidad Politecnica de Madrid
G. Sanchez-Santolino: GFMC, Universidad Complutense Madrid
M. Varela: GFMC, Universidad Complutense Madrid
M. Garcia Hernandez: Laboratorio de Heteroestructuras con aplicación en Spintronica, Unidad Asociada CSIC/Universidad Complutense Madrid, Sor Juana Inés de la Cruz, 3, ES-28049 Madrid, Spain
J. W. Freeland: Advanced Photon Source, Argonne National Laboratory
M. Zhernenkov: Los Alamos National Laboratory
M. R. Fitzsimmons: Los Alamos National Laboratory
S. Okamoto: Oak Ridge National Laboratory
S. J. Pennycook: The University of Tennessee
M. Bibes: Unité Mixte de Physique CNRS/Thales, 1 avenue Augustin Fresnel, Campus de l'Ecole Polytechnique
A. Barthélémy: Unité Mixte de Physique CNRS/Thales, 1 avenue Augustin Fresnel, Campus de l'Ecole Polytechnique
S.G.E. te Velthuis: Argonne National Laboratory
Z. Sefrioui: GFMC, Universidad Complutense Madrid
C. Leon: GFMC, Universidad Complutense Madrid
J. Santamaria: GFMC, Universidad Complutense Madrid
Nature Communications, 2014, vol. 5, issue 1, 1-8
Abstract:
Abstract Electric-field control of magnetism has remained a major challenge which would greatly impact data storage technology. Although progress in this direction has been recently achieved, reversible magnetization switching by an electric field requires the assistance of a bias magnetic field. Here we take advantage of the novel electronic phenomena emerging at interfaces between correlated oxides and demonstrate reversible, voltage‐driven magnetization switching without magnetic field. Sandwiching a non-superconducting cuprate between two manganese oxide layers, we find a novel form of magnetoelectric coupling arising from the orbital reconstruction at the interface between interfacial Mn spins and localized states in the CuO2 planes. This results in a ferromagnetic coupling between the manganite layers that can be controlled by a voltage. Consequently, magnetic tunnel junctions can be electrically toggled between two magnetization states, and the corresponding spin‐dependent resistance states, in the absence of a magnetic field.
Date: 2014
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/ncomms5215 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5215
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms5215
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().