EconPapers    
Economics at your fingertips  
 

The Barbier–Grignard-type arylation of aldehydes using unactivated aryl iodides in water

Feng Zhou and Chao-Jun Li ()
Additional contact information
Feng Zhou: McGill University
Chao-Jun Li: McGill University

Nature Communications, 2014, vol. 5, issue 1, 1-7

Abstract: Abstract Carbon–carbon bond formation is the essence of organic synthesis. One of the most important methods for forming carbon–carbon bonds is the Barbier–Grignard-type reaction, which was discovered over a century ago. However, it is still highly desirable to further improve this process. In this article, we describe a Barbier–Grignard-type direct arylation of aldehydes by using unactivated iodides mediated by zinc and catalysed by rhodium in water. This method bypasses a number of challenges encountered by the conventional Barbier–Grignard reaction, such as strict exclusion of moisture and air, protection–deprotection of various acidic hydrogens in the substrates, and so forth. It thereby creates a safer, more convenient and more environmentally benign strategy to access the diarylmethanols and aryl alkyl alcohols, ubiquitous skeletons found in fine chemicals, biologically active molecules and pharmaceuticals. Importantly, the same reaction performed in an organic solvent proceeded sluggishly to give much inferior yields.

Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/ncomms5254 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5254

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms5254

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5254