EconPapers    
Economics at your fingertips  
 

Femtosecond X-ray-induced explosion of C60 at extreme intensity

B. F. Murphy, T. Osipov, Z. Jurek, L. Fang, S.-K. Son, M. Mucke, J.H.D. Eland, V. Zhaunerchyk, R. Feifel, L. Avaldi, P. Bolognesi, C. Bostedt, J. D. Bozek, J. Grilj, M. Guehr, L. J. Frasinski, J. Glownia, D. T. Ha, K. Hoffmann, E. Kukk, B. K. McFarland, C. Miron, E. Sistrunk, R. J. Squibb, K. Ueda, R. Santra and N. Berrah ()
Additional contact information
B. F. Murphy: Western Michigan University
T. Osipov: Western Michigan University
Z. Jurek: Center for Free-Electron Laser Science, DESY
L. Fang: Western Michigan University
S.-K. Son: Center for Free-Electron Laser Science, DESY
M. Mucke: Gothenburg University
J.H.D. Eland: Gothenburg University
V. Zhaunerchyk: Gothenburg University
R. Feifel: Gothenburg University
L. Avaldi: Instituto di Metodologie Inorganiche e dei Plasmi, C.N.R.
P. Bolognesi: Instituto di Metodologie Inorganiche e dei Plasmi, C.N.R.
C. Bostedt: SLAC National Accelerator Laboratory
J. D. Bozek: SLAC National Accelerator Laboratory
J. Grilj: PULSE, SLAC National Accelerator Laboratory
M. Guehr: PULSE, SLAC National Accelerator Laboratory
L. J. Frasinski: Blackett Laboratory, Imperial College London
J. Glownia: SLAC National Accelerator Laboratory
D. T. Ha: University of Turku
K. Hoffmann: University of Texas at Austin
E. Kukk: University of Turku
B. K. McFarland: PULSE, SLAC National Accelerator Laboratory
C. Miron: Synchrotron SOLEIL, l’Orme des Merisiers, Saint-Aubin, BP 48
E. Sistrunk: PULSE, SLAC National Accelerator Laboratory
R. J. Squibb: Gothenburg University
K. Ueda: Tohoku University
R. Santra: Center for Free-Electron Laser Science, DESY
N. Berrah: University of Connecticut

Nature Communications, 2014, vol. 5, issue 1, 1-9

Abstract: Abstract Understanding molecular femtosecond dynamics under intense X-ray exposure is critical to progress in biomolecular imaging and matter under extreme conditions. Imaging viruses and proteins at an atomic spatial scale and on the time scale of atomic motion requires rigorous, quantitative understanding of dynamical effects of intense X-ray exposure. Here we present an experimental and theoretical study of C60 molecules interacting with intense X-ray pulses from a free-electron laser, revealing the influence of processes not previously reported. Our work illustrates the successful use of classical mechanics to describe all moving particles in C60, an approach that scales well to larger systems, for example, biomolecules. Comparisons of the model with experimental data on C60 ion fragmentation show excellent agreement under a variety of laser conditions. The results indicate that this modelling is applicable for X-ray interactions with any extended system, even at higher X-ray dose rates expected with future light sources.

Date: 2014
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/ncomms5281 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5281

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms5281

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5281