A role for DNA polymerase θ in the timing of DNA replication
Anne Fernandez-Vidal,
Laure Guitton-Sert,
Jean-Charles Cadoret,
Marjorie Drac,
Etienne Schwob,
Giuseppe Baldacci,
Christophe Cazaux () and
Jean-Sébastien Hoffmann ()
Additional contact information
Anne Fernandez-Vidal: Equipe Labellisée Ligue contre le Cancer 2013 INSERM Unit 1037; CNRS ERL 5294; CRCT (Cancer Research Center of Toulouse), BP3028, CHU Purpan
Laure Guitton-Sert: Equipe Labellisée Ligue contre le Cancer 2013 INSERM Unit 1037; CNRS ERL 5294; CRCT (Cancer Research Center of Toulouse), BP3028, CHU Purpan
Jean-Charles Cadoret: Institut Jacques Monod, UMR7592, CNRS and University Paris-Diderot, 15 Rue Hélène Brion, Paris, Cedex 13 75205, France
Marjorie Drac: Institut of Molecular Genetics, CNRS UMR5535 and University of Montpellier
Etienne Schwob: Institut of Molecular Genetics, CNRS UMR5535 and University of Montpellier
Giuseppe Baldacci: Institut Jacques Monod, UMR7592, CNRS and University Paris-Diderot, 15 Rue Hélène Brion, Paris, Cedex 13 75205, France
Christophe Cazaux: Equipe Labellisée Ligue contre le Cancer 2013 INSERM Unit 1037; CNRS ERL 5294; CRCT (Cancer Research Center of Toulouse), BP3028, CHU Purpan
Jean-Sébastien Hoffmann: Equipe Labellisée Ligue contre le Cancer 2013 INSERM Unit 1037; CNRS ERL 5294; CRCT (Cancer Research Center of Toulouse), BP3028, CHU Purpan
Nature Communications, 2014, vol. 5, issue 1, 1-10
Abstract:
Abstract Although DNA polymerase θ (Pol θ) is known to carry out translesion synthesis and has been implicated in DNA repair, its physiological function under normal growth conditions remains unclear. Here we present evidence that Pol θ plays a role in determining the timing of replication in human cells. We find that Pol θ binds to chromatin during early G1, interacts with the Orc2 and Orc4 components of the Origin recognition complex and that the association of Mcm proteins with chromatin is enhanced in G1 when Pol θ is downregulated. Pol θ-depleted cells exhibit a normal density of activated origins in S phase, but early-to-late and late-to-early shifts are observed at a number of replication domains. Pol θ overexpression, on the other hand, causes delayed replication. Our results therefore suggest that Pol θ functions during the earliest steps of DNA replication and influences the timing of replication initiation.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/ncomms5285 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5285
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms5285
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().