Opposing effects of target overexpression reveal drug mechanisms
Adam C. Palmer and
Roy Kishony ()
Additional contact information
Adam C. Palmer: Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts 02115, USA
Roy Kishony: Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts 02115, USA
Nature Communications, 2014, vol. 5, issue 1, 1-8
Abstract:
Abstract Overexpression of a drug’s molecular target often increases drug resistance, offering a pathway for adaptive evolution and a tool for target identification. It is unclear though why this phenomenon applies to some drugs but not others. Here we gradually overexpressed antibiotic targets in Escherichia coli and found that drug resistance can increase, remain unchanged, decrease or even change non-monotonically. Even a single target can produce opposing responses to its different inhibitors. We explain these contradicting effects with quantitative models of enzyme inhibition that account for fitness costs and the biochemical activity or inactivity of drug–enzyme complexes. Thus, target overexpression confers resistance or sensitivity as a predictable property of drug mechanism, explaining its variable presence in nature as a resistance mechanism. Though overexpression screens may fail at identifying unknown targets, overexpressing known or putative targets provides a systematic approach to distinguish between simple inhibition and complex mechanisms of drug action.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.nature.com/articles/ncomms5296 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5296
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/ncomms5296
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().