EconPapers    
Economics at your fingertips  
 

Origin of slow magnetic relaxation in Kramers ions with non-uniaxial anisotropy

Silvia Gómez-Coca, Ainhoa Urtizberea, Eduard Cremades, Pablo J. Alonso, Agustín Camón, Eliseo Ruiz () and Fernando Luis ()
Additional contact information
Silvia Gómez-Coca: Departament de Química Inorgànica and Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona
Ainhoa Urtizberea: Instituto de Ciencia de Materiales de Aragón, CSIC—Universidad de Zaragoza
Eduard Cremades: Departament de Química Inorgànica and Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona
Pablo J. Alonso: Instituto de Ciencia de Materiales de Aragón, CSIC—Universidad de Zaragoza
Agustín Camón: Instituto de Ciencia de Materiales de Aragón, CSIC—Universidad de Zaragoza
Eliseo Ruiz: Departament de Química Inorgànica and Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona
Fernando Luis: Instituto de Ciencia de Materiales de Aragón, CSIC—Universidad de Zaragoza

Nature Communications, 2014, vol. 5, issue 1, 1-8

Abstract: Abstract Transition metal ions with long-lived spin states represent minimum size magnetic bits. Magnetic memory has often been associated with the combination of high spin and strong uniaxial magnetic anisotropy. Yet, slow magnetic relaxation has also been observed in some Kramers ions with dominant easy-plane magnetic anisotropy, albeit only under an external magnetic field. Here we study the spin dynamics of cobalt(II) ions in a model molecular complex. We show, by means of quantitative first-principles calculations, that the slow relaxation in this and other similar systems is a general consequence of time-reversal symmetry that hinders direct spin–phonon processes regardless of the sign of the magnetic anisotropy. Its magnetic field dependence is a subtle manifestation of electronuclear spin entanglement, which opens relaxation channels that would otherwise be forbidden but, at the same time, masks the relaxation phenomenon at zero field. These results provide a promising strategy to synthesize atom-size magnetic memories.

Date: 2014
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/ncomms5300 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5300

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/ncomms5300

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5300